
Yannic Kilcher Videos (Audio Only)
I make videos about machine learning research papers, programming, and issues of the AI community, and the broader impact of AI in society.
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar (preferred to Patreon): https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Latest episodes

Apr 25, 2022 • 58min
Sparse Expert Models (Switch Transformers, GLAM, and more... w/ the Authors)
#nlp #sparsity #transformers
This video is an interview with Barret Zoph and William Fedus of Google Brain about Sparse Expert Models.
Sparse Expert models have been hugely successful at distributing parts of models, mostly Transformers, across large array of machines and use a routing function to effectively route signals between them. This means that even though these models have a huge number of parameters, the computational load for a given signal does not increase because the model is only sparsely activated. Sparse expert models, such as Switch Transformers and GLAM can scale up to trillions of parameters and bring a number of desirable properties. We discuss everything from the fundamentals, history, strengths and weaknesses, up to the current state of the art of these models.
OUTLINE:
0:00 - Intro
0:30 - What are sparse expert models?
4:25 - Start of Interview
5:55 - What do you mean by sparse experts?
8:10 - How does routing work in these models?
12:10 - What is the history of sparse experts?
14:45 - What does an individual expert learn?
19:25 - When are these models appropriate?
22:30 - How comparable are sparse to dense models?
26:30 - How does the pathways system connect to this?
28:45 - What improvements did GLAM make?
31:30 - The "designing sparse experts" paper
37:45 - Can experts be frozen during training?
41:20 - Can the routing function be improved?
47:15 - Can experts be distributed beyond data centers?
50:20 - Are there sparse experts for other domains than NLP?
52:15 - Are sparse and dense models in competition?
53:35 - Where do we go from here?
56:30 - How can people get started with this?
Papers:
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity (https://arxiv.org/abs/2101.03961)
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts (https://arxiv.org/abs/2112.06905)
Designing Effective Sparse Expert Models (https://arxiv.org/abs/2202.08906)
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Apr 21, 2022 • 43min
Author Interview - Transformer Memory as a Differentiable Search Index
#neuralsearch #interview #google
This is an interview with the authors Yi Tay and Don Metzler.
Paper Review Video: https://youtu.be/qlB0TPBQ7YY
Search engines work by building an index and then looking up things in it. Usually, that index is a separate data structure. In keyword search, we build and store reverse indices. In neural search, we build nearest-neighbor indices. This paper does something different: It directly trains a Transformer to return the ID of the most relevant document. No similarity search over embeddings or anything like this is performed, and no external data structure is needed, as the entire index is essentially captured by the model's weights. The paper experiments with various ways of representing documents and training the system, which works surprisingly well!
OUTLINE:
0:00 - Intro
0:50 - Start of Interview
1:30 - How did this idea start?
4:30 - How does memorization play into this?
5:50 - Why did you not compare to cross-encoders?
7:50 - Instead of the ID, could one reproduce the document itself?
10:50 - Passages vs documents
12:00 - Where can this model be applied?
14:25 - Can we make this work on large collections?
19:20 - What's up with the NQ100K dataset?
23:55 - What is going on inside these models?
28:30 - What's the smallest scale to obtain meaningful results?
30:15 - Investigating the document identifiers
34:45 - What's the end goal?
38:40 - What are the hardest problems currently?
40:40 - Final comments & how to get started
Paper: https://arxiv.org/abs/2202.06991
Abstract:
In this paper, we demonstrate that information retrieval can be accomplished with a single Transformer, in which all information about the corpus is encoded in the parameters of the model. To this end, we introduce the Differentiable Search Index (DSI), a new paradigm that learns a text-to-text model that maps string queries directly to relevant docids; in other words, a DSI model answers queries directly using only its parameters, dramatically simplifying the whole retrieval process. We study variations in how documents and their identifiers are represented, variations in training procedures, and the interplay between models and corpus sizes. Experiments demonstrate that given appropriate design choices, DSI significantly outperforms strong baselines such as dual encoder models. Moreover, DSI demonstrates strong generalization capabilities, outperforming a BM25 baseline in a zero-shot setup.
Authors: Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, Donald Metzler
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Apr 21, 2022 • 52min
Transformer Memory as a Differentiable Search Index (Machine Learning Research Paper Explained)
#dsi #search #google
Search engines work by building an index and then looking up things in it. Usually, that index is a separate data structure. In keyword search, we build and store reverse indices. In neural search, we build nearest-neighbor indices. This paper does something different: It directly trains a Transformer to return the ID of the most relevant document. No similarity search over embeddings or anything like this is performed, and no external data structure is needed, as the entire index is essentially captured by the model's weights. The paper experiments with various ways of representing documents and training the system, which works surprisingly well!
Sponsor: Diffgram
https://diffgram.com?ref=yannic
OUTLINE:
0:00 - Intro
0:45 - Sponsor: Diffgram
1:35 - Paper overview
3:15 - The search problem, classic and neural
8:15 - Seq2seq for directly predicting document IDs
11:05 - Differentiable search index architecture
18:05 - Indexing
25:15 - Retrieval and document representation
33:25 - Training DSI
39:15 - Experimental results
49:25 - Comments & Conclusions
Paper: https://arxiv.org/abs/2202.06991
Abstract:
In this paper, we demonstrate that information retrieval can be accomplished with a single Transformer, in which all information about the corpus is encoded in the parameters of the model. To this end, we introduce the Differentiable Search Index (DSI), a new paradigm that learns a text-to-text model that maps string queries directly to relevant docids; in other words, a DSI model answers queries directly using only its parameters, dramatically simplifying the whole retrieval process. We study variations in how documents and their identifiers are represented, variations in training procedures, and the interplay between models and corpus sizes. Experiments demonstrate that given appropriate design choices, DSI significantly outperforms strong baselines such as dual encoder models. Moreover, DSI demonstrates strong generalization capabilities, outperforming a BM25 baseline in a zero-shot setup.
Authors: Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, Donald Metzler
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Apr 12, 2022 • 14min
[ML News] Google's 540B PaLM Language Model & OpenAI's DALL-E 2 Text-to-Image Revolution
#mlnews #palm #dalle2
Google releases PaLM and OpenAI releases DALL-E 2 (and more news).
Sponsor: Weights & BIases
Start here: https://wandb.me/yannic
Thumbnail credit: DALL-E 2 via Sam Altman
OUTLINE
0:00 - Street interview w/ random stranger
2:25 - Intro
2:50 - PaLM - Google's 540B Pathways Language Model
7:50 - Sponsor: Weights & Biases
9:10 - OpenAI releases DALL-E 2
12:05 - Open Source Datasets and Models
13:20 - Salesforce releases CodeGen
My Live Reaction to DALL-E 2: https://youtu.be/gGPv_SYVDC8
My Video on GLIDE: https://youtu.be/gwI6g1pBD84
My Video on the Pathways System: https://youtu.be/vGFaiLeoLWw
References:
PaLM - Google's 540B Pathways Language Model
https://ai.googleblog.com/2022/04/pat...
https://storage.googleapis.com/pathwa...
OpenAI releases DALL-E 2
https://openai.com/dall-e-2/
https://cdn.openai.com/papers/dall-e-...
https://www.instagram.com/openaidalle/
https://twitter.com/sama/status/15117...
https://twitter.com/sama/media
https://twitter.com/BorisMPower/statu...
https://twitter.com/ariskonstant/stat...
Open Source Datasets and Models
https://twitter.com/multimodalart/sta...
https://laion.ai/laion-5b-a-new-era-o...
https://github.com/mlfoundations/open...
Salesforce releases CodeGen
https://github.com/salesforce/CodeGen
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Apr 6, 2022 • 59min
The Weird and Wonderful World of AI Art (w/ Author Jack Morris)
#aiart #deeplearning #clip
Since the release of CLIP, the world of AI art has seen an unprecedented level of acceleration in what's possible to do. Whereas image generation had previously been mostly in the domain of scientists, now a community of professional artists, researchers, and amateurs are sending around colab notebooks and sharing their creations via social media. How did this happen? What is going on? And where do we go from here? Jack Morris and I attempt to answer some of these questions, following his blog post "The Weird and Wonderful World of AI Art" (linked below).
OUTLINE:
0:00 - Intro
2:30 - How does one get into AI art?
5:00 - Deep Dream & Style Transfer: the early days of art in deep learning
10:50 - The advent of GANs, ArtBreeder and TikTok
19:50 - Lacking control: Pre-CLIP art
22:40 - CLIP & DALL-E
30:20 - The shift to shared colabs
34:20 - Guided diffusion models
37:20 - Prompt engineering for art models
43:30 - GLIDE
47:00 - Video production & Disco Diffusion
48:40 - Economics, money, and NFTs
54:15 - What does the future hold for AI art?
Blog post: https://jxmo.notion.site/The-Weird-an...
Jack's Blog: https://jxmo.io/
Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Apr 6, 2022 • 49min
Author Interview - Improving Intrinsic Exploration with Language Abstractions
#reinforcementlearning #ai #explained
This is an interview with Jesse Mu, first author of the paper.
Original Paper Review: https://youtu.be/NeGJAUSQEJI
Exploration is one of the oldest challenges for Reinforcement Learning algorithms, with no clear solution to date. Especially in environments with sparse rewards, agents face significant challenges in deciding which parts of the environment to explore further. Providing intrinsic motivation in form of a pseudo-reward is sometimes used to overcome this challenge, but often relies on hand-crafted heuristics, and can lead to deceptive dead-ends. This paper proposes to use language descriptions of encountered states as a method of assessing novelty. In two procedurally generated environments, they demonstrate the usefulness of language, which is in itself highly concise and abstractive, which lends itself well for this task.
OUTLINE:
0:00 - Intro
0:55 - Paper Overview
4:30 - Aren't you just adding extra data?
9:35 - Why are you splitting up the AMIGo teacher?
13:10 - How do you train the grounding network?
16:05 - What about causally structured environments?
17:30 - Highlights of the experimental results
20:40 - Why is there so much variance?
22:55 - How much does it matter that we are testing in a video game?
27:00 - How does novelty interface with the goal specification?
30:20 - The fundamental problems of exploration
32:15 - Are these algorithms subject to catastrophic forgetting?
34:45 - What current models could bring language to other environments?
40:30 - What does it take in terms of hardware?
43:00 - What problems did you encounter during the project?
46:40 - Where do we go from here?
Paper: https://arxiv.org/abs/2202.08938
Abstract:
Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.
Authors: Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, Edward Grefenstette
Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m

Apr 6, 2022 • 42min
Improving Intrinsic Exploration with Language Abstractions (Machine Learning Paper Explained)
#reinforcementlearning #ai #explained
Exploration is one of the oldest challenges for Reinforcement Learning algorithms, with no clear solution to date. Especially in environments with sparse rewards, agents face significant challenges in deciding which parts of the environment to explore further. Providing intrinsic motivation in form of a pseudo-reward is sometimes used to overcome this challenge, but often relies on hand-crafted heuristics, and can lead to deceptive dead-ends. This paper proposes to use language descriptions of encountered states as a method of assessing novelty. In two procedurally generated environments, they demonstrate the usefulness of language, which is in itself highly concise and abstractive, which lends itself well for this task.
OUTLINE:
0:00 - Intro
1:10 - Paper Overview: Language for exploration
5:40 - The MiniGrid & MiniHack environments
7:00 - Annotating states with language
9:05 - Baseline algorithm: AMIGo
12:20 - Adding language to AMIGo
22:55 - Baseline algorithm: NovelD and Random Network Distillation
29:45 - Adding language to NovelD
31:50 - Aren't we just using extra data?
34:55 - Investigating the experimental results
40:45 - Final comments
Paper: https://arxiv.org/abs/2202.08938
Abstract:
Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.
Authors: Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, Edward Grefenstette
Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Apr 6, 2022 • 18min
[ML News] GPT-3 learns to edit | Google Pathways | Make-A-Scene | CLIP meets GamePhysics | DouBlind
#mlnews #gpt3 #pathways
Your updates on the latest and greatest from the depths of Machine Learning!
Sponsor: Weights & Biases
https://wandb.me/yannic
OUTLINE:
0:00 - Intro
0:15 - Weights & Biases Report about Reports
2:45 - GPT-3 learns to edit
6:30 - Make-A-Scene: Text-to-Image with Human Priors
8:00 - Pathways: Google's new High-Performance ML scheduler
10:45 - DouBlind: Open Peer-Review
12:45 - CLIP meets GamePhysics
14:40 - Residual Quantization pushes Image Generation SOTA
16:15 - Helpful Things
References:
Weights & Biases Report about Reports
https://wandb.ai/wandb/wandb_example/...
GPT-3 learns to edit
https://openai.com/blog/gpt-3-edit-in...
https://beta.openai.com/playground?mo...
Make-A-Scene: Text-to-Image with Human Priors
https://arxiv.org/pdf/2203.13131.pdf
https://www.youtube.com/watch?v=QLTyq...
Pathways: Google's new High-Performance ML scheduler
https://arxiv.org/pdf/2203.12533.pdf
DouBlind: Open Peer-Review
https://doublind.com/#web-intro
https://doublind.com/search?query=kil...
CLIP meets GamePhysics
https://arxiv.org/pdf/2203.11096.pdf
https://www.reddit.com/r/GamePhysics/...
https://asgaardlab.github.io/CLIPxGam...
Residual Quantization pushes Image Generation SOTA
https://arxiv.org/pdf/2203.01941.pdf
https://github.com/kakaobrain/rq-vae-...
Helpful Things
https://github.com/TDAmeritrade/stumpy
https://github.com/linkedin/fasttreeshap
https://github.com/vopani/jaxton
https://twitter.com/mark_riedl/status...
https://github.com/eilab-gt/NovGrid
https://developer.nvidia.com/isaac-gym
https://github.com/NVIDIA-Omniverse/I...
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Mar 30, 2022 • 41min
Author Interview - Memory-assisted prompt editing to improve GPT-3 after deployment
#nlp #gpt3 #prompt
This is an interview with the authors of this work, Aman Madaan and Niket Tandon.
Large language models such as GPT-3 have enabled many breakthroughs and new applications recently, but they come with an important downside: Training them is very expensive, and even fine-tuning is often difficult. This paper presents an adaptive method to improve performance of such models after deployment, without ever changing the model itself. This is done by maintaining a memory of interactions and then dynamically adapting new prompts by augmenting them with memory content. This has many applications, from non-intrusive fine-tuning to personalization.
OUTLINE:
0:00 - Intro
0:45 - Paper Overview
2:00 - What was your original motivation?
4:20 - There is an updated version of the paper!
9:00 - Have you studied this on real-world users?
12:10 - How does model size play into providing feedback?
14:10 - Can this be used for personalization?
16:30 - Discussing experimental results
17:45 - Can this be paired with recommender systems?
20:00 - What are obvious next steps to make the system more powerful?
23:15 - Clarifying the baseline methods
26:30 - Exploring cross-lingual customization
31:00 - Where did the idea for the clarification prompt come from?
33:05 - What did not work out during this project?
34:45 - What did you learn about interacting with large models?
37:30 - Final thoughts
Paper: https://arxiv.org/abs/2201.06009
Code & Data: https://github.com/madaan/memprompt
Abstract:
Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homonym, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. All the code and data is available at this https URL.
Authors: Aman Madaan, Niket Tandon, Peter Clark, Yiming Yang
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Mar 30, 2022 • 37min
Memory-assisted prompt editing to improve GPT-3 after deployment (Machine Learning Paper Explained)
#nlp #gpt3 #prompt
Large language models such as GPT-3 have enabled many breakthroughs and new applications recently, but they come with an important downside: Training them is very expensive, and even fine-tuning is often difficult. This paper presents an adaptive method to improve performance of such models after deployment, without ever changing the model itself. This is done by maintaining a memory of interactions and then dynamically adapting new prompts by augmenting them with memory content. This has many applications, from non-intrusive fine-tuning to personalization.
Sponsor: Introduction to Graph Neural Networks Course
https://www.graphneuralnets.com/p/int...
OUTLINE:
0:00 - Intro
0:40 - Sponsor: Introduction to GNNs Course (link in description)
1:30 - Paper Overview: Improve GPT-3 after deployment via user feedback
5:30 - Proposed memory-based architecture
13:00 - A detailed look at the components
15:00 - Example tasks
24:30 - My concerns with the example setup
26:20 - Baselines used for comparison
29:50 - Experimental Results
34:20 - Conclusion & Comments
Paper: https://arxiv.org/abs/2201.06009
Code & Data: https://github.com/madaan/memprompt
Abstract:
Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homonym, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. All the code and data is available at this https URL.
Authors: Aman Madaan, Niket Tandon, Peter Clark, Yiming Yang
Links:
Merch: store.ykilcher.com
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n