

Aging-US
Aging (Aging-US) Podcast
Aging-US is dedicated to advancing our understanding of the biological mechanisms that drive aging and the development of age-related diseases. Our mission is to serve as a platform for high-quality research that uncovers the cellular, molecular, and systemic processes underlying aging, and translates these insights into strategies to extend healthspan and delay the onset of chronic disease.
Read about the Aging (Aging-US) Scientific Integrity Process: https://aging-us.com/scientific-integrity
Read about the Aging (Aging-US) Scientific Integrity Process: https://aging-us.com/scientific-integrity
Episodes
Mentioned books

Sep 21, 2022 • 7min
Can microRNAs in the Bloodstream Signal Cognitive Decline?
Listen to a blog summary about a trending research paper published by Aging (Aging-US as the cover of Volume 14, Issue 17, entitled, "Extracellular microRNA and cognitive function in a prospective cohort of older men: The Veterans Affairs Normative Aging Study.”
__________________________________________
Can factors in our bloodstream tell us about our cognitive abilities or predict cognitive decline later in life? Among individuals with dementias, including Alzheimer’s disease (AD), studies have identified extracellular microRNAs (miRNAs) as potential biomarkers of cognitive impairment. In cognitively normal individuals, however, this association has not yet been fully investigated.
“Understanding the functions of miRNAs in the earliest stages of cognitive decline will expand our knowledge on the biology of prodromal AD and the roles of circulating miRNAs in neurodegenerative diseases and could result in identification of therapeutic targets to guide drug development [17].”
In a new research paper, published on the cover of Volume 14, Issue 17, of Aging (listed as “Aging (Albany NY)” by Medline/PubMed and “Aging-US” by Web of Science), researchers Nicole Comfort, Haotian Wu, Peter De Hoff, Aishwarya Vuppala, Pantel S. Vokonas, Avron Spiro, Marc Weisskopf, Brent A. Coull, Louise C. Laurent, Andrea A. Baccarelli, and Joel Schwartz from Columbia University Mailman School of Public Health, University of California San Diego, VA Boston Healthcare System, Boston University School of Medicine, and Harvard TH Chan School of Public Health investigated expression levels of extracellular miRNAs circulating in blood plasma taken from cognitively normal men and the association between these miRNAs and cognitive function. Their secondary goal was to investigate the genes and biological pathways associated with miRNAs linked to cognitive function or decline. The research paper was published on September 6, 2022, and entitled, “Extracellular microRNA and cognitive function in a prospective cohort of older men: The Veterans Affairs Normative Aging Study.”
Full blog - https://aging-us.org/2022/09/can-micrornas-in-the-bloodstream-signal-cognitive-decline/
DOI - https://doi.org/10.18632/aging.204268
Corresponding author - Nicole Comfort - nicole.comfort@columbia.edu
Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204268
Press release - https://aging-us.com/news_room/Extracellular-microRNA-and-cognitive-function-in-a-prospective-cohort-of-older-men
Keywords - aging, plasma, extracellular RNA, RNA-seq, microRNA, cognitive decline, cognitive impairment
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Sep 20, 2022 • 14min
Behind the Study: Epigenetic Clocks Association with Perceived Discrimination, Depressive Symptoms
Dr. May Beydoun from the Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, in Baltimore, MD, discusses a research paper she co-authored that was published by Aging (Aging-US) as the cover for Volume 14, Issue 13, entitled, “Epigenetic clocks and their association with trajectories in perceived discrimination and depressive symptoms among US middle-aged and older adults.”
DOI - https://doi.org/10.18632/aging.204150
Corresponding author - May A. Beydoun - baydounm@mail.nih.gov
Video version - https://www.youtube.com/watch?v=gkiDhjTL0YY
Abstract
Background: Perceived discrimination may be associated with accelerated aging later in life, with depressive symptoms acting as potential mediator.
Methods: A nationally representative sample of older adults was used [Health and Retirement Study 2010–2016, Age: 50–100 y in 2016, N = 2,806, 55.6% female, 82.3% Non-Hispanic White (NHW)] to evaluate associations of perceived discrimination measures [Experience of discrimination or EOD; and Reasons for Perceived discrimination or RPD) and depressive symptoms (DEP)] with 13 DNAm-based measures of epigenetic aging. Group-based trajectory and four-way mediation analyses were used.
Results: Overall, and mostly among female and NHW participants, greater RPD in 2010–2012 had a significant adverse total effect on epigenetic aging [2016: DNAm GrimAge, DunedinPoAm38 (MPOA), Levine (PhenoAge) and Horvath 2], with 20–50% of this effect being explained by a pure indirect effect through DEP in 2014–2016. Among females, sustained elevated DEP (2010–2016) was associated with greater LIN DNAm age (β ± SE: +1.506 ± 0.559, p = 0.009, reduced model), patterns observed for elevated DEP (high vs. low) for GrimAge and MPOA DNAm markers. Overall and in White adults, the relationship of the Levine clock with perceived discrimination in general (both EOD and RPD) was mediated through elevated DEP.
Conclusions: Sustained elevations in DEP and RPD were associated with select biological aging measures, consistently among women and White adults, with DEP acting as mediator in several RPD-EPICLOCK associations.
Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204150
Press release - https://www.aging-us.com/news_room/epigenetic-clocks-and-their-association-with-perceived-discrimination-and-depressive-symptoms
Keywords - aging, DNA methylation, epigenetic clocks, biological age, perceived discrimination, depressive symptoms
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Sep 15, 2022 • 5min
Press Release: Extracellular microRNA and Cognitive Function in Older Men
A new research paper was published on the cover of Aging (Aging-US) Volume 14, Issue 17, entitled, “Extracellular microRNA and cognitive function in a prospective cohort of older men: The Veterans Affairs Normative Aging Study.”
Aging-related cognitive decline is an early symptom of Alzheimer’s disease and other dementias, and on its own can have substantial consequences on an individual’s ability to perform important everyday functions. Despite increasing interest in the potential roles of extracellular microRNAs (miRNAs) in central nervous system (CNS) pathologies, there has been little research on extracellular miRNAs in early stages of cognitive decline.
In a new study, researchers Nicole Comfort, Haotian Wu, Peter De Hoff, Aishwarya Vuppala, Pantel S. Vokonas, Avron Spiro, Marc Weisskopf, Brent A. Coull, Louise C. Laurent, Andrea A. Baccarelli, and Joel Schwartz from Columbia University Mailman School of Public Health, University of California San Diego, VA Boston Healthcare System, Boston University School of Medicine, and Harvard TH Chan School of Public Health leveraged the longitudinal Normative Aging Study (NAS) cohort to investigate associations between plasma miRNAs and cognitive function among cognitively normal men.
“In a cohort of older men from Massachusetts, we investigated associations between plasma miRNAs and global cognition and rate of global cognitive decline measured by the MMSE.”
Full press release - https://aging-us.net/2022/09/15/aging-extracellular-microrna-and-cognitive-function-in-a-prospective-cohort-of-older-men-the-veterans-affairs-normative-aging-study/
DOI: https://doi.org/10.18632/aging.204268
Corresponding Author: Nicole Comfort – nicole.comfort@columbia.edu
Keywords: plasma, extracellular RNA, RNA-seq, microRNA, cognitive decline, cognitive impairment
Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204268
About Aging-US:
Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at www.Aging-US.com and connect with us:
SoundCloud – https://soundcloud.com/Aging-Us
Facebook – https://www.facebook.com/AgingUS/
Twitter – https://twitter.com/AgingJrnl
Instagram – https://www.instagram.com/agingjrnl/
YouTube – https://www.youtube.com/agingus
LinkedIn – https://www.linkedin.com/company/aging/
Reddit – https://www.reddit.com/user/AgingUS
Pinterest – https://www.pinterest.com/AgingUS/
For media inquiries, contact media@impactjournals.com.

Sep 14, 2022 • 7min
The 2022 “New Hallmarks of Ageing” Research Symposium
Listen to a blog summary of a trending review published by Aging (Aging-US), entitled, "New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary."
______________________________________
Humans battle a number of biological processes with age that lead to the gradual deterioration of cells and tissues. Frailty, disability, disease, and death are all costly fates of aging. Researchers who study aging aim to change this fate, however, the mechanisms of aging are still all but fully understood.
In 2013, López-Otín and colleagues attempted to identify these biological processes and proposed the original nine hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, loss of proteostasis, deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks of aging have helped to provide a framework for thought about the causes and consequences of aging, as well as potential targets for therapeutic interventions. Now, nine years later, the hallmarks of aging have been updated in light of recent discoveries.
“In the nearly past 10 years, our in-depth exploration on ageing research has enabled us to formulate new hallmarks of ageing which are compromised autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation, among other emerging ones.”
This update was presented on March 22, 2022, at the “New Hallmarks of Ageing” research symposium in Copenhagen, Denmark. On August 29, 2022, a review paper summarizing the symposium was published in Aging (Aging-US), entitled, “New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary.”
Full blog - https://aging-us.org/2022/09/the-2022-new-hallmarks-of-ageing-research-symposium/
DOI - https://doi.org/10.18632/aging.204248
Corresponding authors - Tinna Stevnsner - tvs@mbg.au.dk, Lene Juel Rasmussen - lenera@sund.ku.dk, Evandro F. Fang - e.f.fang@medisin.uio.no
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204248
Keywords - aging, hallmarks of ageing, neurodegeneration, healthspan, longevity, autophagy
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Sep 14, 2022 • 40min
Longevity & Aging Series (EP 4): Drs. Carly Bobak, Cristian Coarfa, Andrew DiNardo
In the fourth episode of the Longevity & Aging Series, Dr. Carly Bobak from Dartmouth College, Dr. Cristian Coarfa from Baylor College of Medicine, and Dr. Andrew DiNardo from Baylor College of Medicine, discuss a research paper they co-authored that was published in Volume 14, Issue 5, of Aging (Aging-US), entitled, “Increased DNA methylation, cellular senescence and premature epigenetic aging in guinea pigs and humans with tuberculosis.”
DOI - https://doi.org/10.18632/aging.203936
Corresponding Authors - Carly A. Bobak - carlybobak@dartmouth.edu, Cristian Coarfa - coarfa@bcm.edu, and Andrew R. DiNardo - andrew.dinardo@bcm.edu
Abstract
Background: Tuberculosis (TB) is the archetypical chronic infection, with patients having months of symptoms before diagnosis. In the two years after successful therapy, survivors of TB have a three-fold increased risk of death.
Methods: Guinea pigs were infected with Mycobacterium tuberculosis (Mtb) for 45 days, followed by RRBS DNA methylation analysis. In humans, network analysis of differentially expressed genes across three TB cohorts were visualized at the pathway-level. Serum levels of inflammation were measured by ELISA. Horvath (DNA methylation) and RNA-seq biological clocks were used to investigate shifts in chronological age among humans with TB.
Results: Guinea pigs with TB demonstrated DNA hypermethylation and showed system-level similarity to humans with TB (p-value = 0.002). The transcriptome in TB in multiple cohorts was enriched for DNA methylation and cellular senescence. Senescence associated proteins CXCL9, CXCL10, and TNF were elevated in TB patients compared to healthy controls. Humans with TB demonstrate 12.7 years (95% CI: 7.5, 21.9) and 14.38 years (95% CI: 10.23–18.53) of cellular aging as measured by epigenetic and gene expression based cellular clocks, respectively.
Conclusions: In both guinea pigs and humans, TB perturbs epigenetic processes, promoting premature cellular aging and inflammation, a plausible means to explain the long-term detrimental health outcomes after TB.
Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.203936
Longevity & Aging Series
Aging (Aging-US) and FOXO Technologies have teamed up for a special collaboration on aging research with a monthly video series: Longevity & Aging Series. This series invites Aging researchers to speak with host Dr. Brian Chen, an adjunct faculty member at the University of California San Diego and Chief Science Officer of FOXO Technologies.
Learn more - https://www.aging-us.com/longevity
Keywords - aging, tuberculosis, multi-cohort analysis, network analysis, DNA methylation, senescence, Cavia porcellus, DNA hypermethylation, epigenetic aging
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Sep 6, 2022 • 4min
Press Release: Systemic Lipolysis Promotes Physiological Fitness
A new research paper was published in Aging (“Aging (Albany NY)” by Medline/PubMed, “Aging-US” by Web of Science) Volume 14, Issue 16, entitled, “Systemic lipolysis promotes physiological fitness in Drosophila melanogaster.”
A large body of literature shows that lipid metabolism exerts profound regulatory effects on aging and affects stress responses. Interventions such as caloric restriction or fasting robustly promote lipid catabolism and improve aging-related phenotypical markers.
Researchers Linshan Shang, Elizabeth Aughey, Huiseon Kim, Timothy D. Heden, Lu Wang, Charles P. Najt, Nicholas Esch, Sophia Brunko, Juan E. Abrahante, Marissa Macchietto, Mara T. Mashek, Todd Fairbanks, Daniel E. L. Promislow, Thomas P. Neufeld, and Douglas G. Mashek from the University of Minnesota and University of Washington investigated the direct effect of increased lipid catabolism via overexpression of bmm (brummer, FBgn0036449), the major triglyceride hydrolase in Drosophila, on lifespan and physiological fitness.
Comprehensive characterization was carried out using RNA-seq, lipidomics and metabolomics analysis. Global overexpression of bmm strongly promoted numerous markers of physiological fitness, including increased female fecundity, fertility maintenance, preserved locomotion activity, increased mitochondrial biogenesis and oxidative metabolism. Since bmm drives fatty acid oxidation, the data in this study implicated differential partitioning of glucose into the pentose phosphate pathway and purine biosynthesis between males and females. However, the underlying mechanisms through which bmm elicits these sex-specific effects remains to be determined.
“Increased bmm robustly upregulated the heat shock protein 70 (Hsp70) family of proteins, which equipped the flies with higher resistance to heat, cold, and ER [endoplasmic reticulum] stress via improved proteostasis.”
Despite improved physiological fitness, bmm overexpression did not extend lifespan. Taken together, these data show that bmm overexpression has broad beneficial effects on physiological fitness, but not lifespan.
“Collectively, these studies reveal diverse beneficial effects of global elevation of lipolysis on physiological fitness. This work provides additional rationale for pursuing therapeutic approaches, as done previously [39], that enhance lipolysis to mitigate metabolic and aging-related diseases.”
DOI: https://doi.org/10.18632/aging.204251
Corresponding Author: Douglas G. Mashek – Email: dmashek@umn.edu
Keywords: brummer, lipolysis, physiological fitness, stress resistance, proteostasis
Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204251
About Aging-US:
Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at www.Aging-US.com and connect with us:
SoundCloud – https://soundcloud.com/Aging-Us
Facebook – https://www.facebook.com/AgingUS/
Twitter – https://twitter.com/AgingJrnl
Instagram – https://www.instagram.com/agingjrnl/
YouTube – https://www.youtube.com/agingus
LinkedIn – https://www.linkedin.com/company/aging/
Reddit – https://www.reddit.com/user/AgingUS
Pinterest – https://www.pinterest.com/AgingUS/
For media inquiries, please contact media@impactjournals.com

Sep 2, 2022 • 5min
Press Release: Synergism Of BCL-2 Inhibitors Facilitates Selective Elimination Of Senescent Cells
A new research paper was published in Aging (“Aging (Albany NY)” by Medline/PubMed, “Aging-US” by Web of Science) on the cover of Volume 14, Issue 16, entitled, “Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells.”
Cellular senescence, a complex cellular response to stress characterized by a halt of cell cycle progression, is one factor contributing to aging. Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases.
Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues.
“In this study, with the goal of decreasing the toxicity and potential onset of resistance to senolytic BCL-2 inhibitor monotherapy, we explored the effects of combined treatment covering both BCL-2 and MCL-1 anti-apoptotic factors in human cells.”
Researchers David Rysanek, Pavla Vasicova, Jayaprakash Narayana Kolla, David Sedlak, Ladislav Andera, Jiri Bartek, and Zdenek Hodny from the Czech Academy of Sciences and the Danish Cancer Society Research Center aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics.
“Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics.”
In an attempt to uncover the mechanism of such synergy, the team revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells.
Overall, the researchers found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.
DOI: https://doi.org/10.18632/aging.204207
Corresponding Author: Jiri Bartek, Zdenek Hodny – Email: jb@cancer.dk, hodny@img.cas.cz
Keywords: homoharringtonine, cellular senescence, BCL-2, MCL-1, senolytics
Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204207
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/

Aug 26, 2022 • 7min
Stroke Outcomes Mediated by These 2 Mechanisms
Listen to a blog summary of a trending research paper published by Aging, entitled, "Regulation of microglial activation in stroke in aged mice: a translational study.“
__________________________________________
A stroke can occur when the blood supply in and around the brain becomes interrupted. A hemorrhagic stroke is when a blood vessel bursts in or near the brain. An ischemic stroke is caused when a blood vessel carrying oxygen and nutrients to the brain is obstructed—usually by a clot. The most common type of stroke is ischemic, which accounts for approximately 87% of all strokes in humans. A major risk factor for an ischemic stroke is aging.
Inflammation (a chronic condition among the elderly) is a key contributing factor to strokes, and microglia are the primary immune cells in the brain. Researchers recently identified a role for the microglial IRF5-IRF4 regulatory axis in mediating responses after stroke. However, whether or not aged microglia also undergo the same regulatory mechanisms after a stroke had previously not been determined.
“Microglial activation plays a central role in initiating and perpetuating the post-stroke inflammation, and acts as a ‘double-edged’ sword to confer both detrimental and beneficial effects [9].”
In a recent study, researchers Conelius Ngwa, Abdullah Al Mamun, Shaohua Qi, Romana Sharmeen, Yan Xu, and Fudong Liu from The University of Texas Health Science Center at Houston investigated aged mice and the role of the microglial IRF5-IRF4 regulatory axis after a stroke. On August 12, 2022, their research paper was published in Aging’s Volume 14, Issue 15, and entitled, “Regulation of microglial activation in stroke in aged mice: a translational study.“
Full blog - https://aging-us.org/2022/08/stroke-outcomes-mediated-by-these-2-mechanisms/
DOI - https://doi.org/10.18632/aging.204216
Corresponding author - Fudong Liu - Fudong.Liu@uth.tmc.edu
Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204216
Keywords - aging, inflammation, IRF, inflammation, microglia, stroke
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Aug 23, 2022 • 24min
Longevity & Aging Series (EP 3): Dr. Steve Horvath - Epigenetic Clocks
In the third episode of the Longevity & Aging Series, Dr. Steve Horvath, Professor of Human Genetics and Biostatistics at UCLA, and Principal Investigator at Altos Labs, discusses the evolution of aging research and epigenetic clocks with host Brian Chen.
Special Collection on Steve Horvath's Publications in Aging - https://www.aging-us.com/special-collections-archive/steve-horvath
Author contact - Steve Horvath - shorvath@mednet.ucla.edu
Longevity & Aging Series - https://www.aging-us.com/longevity
Transcript - https://aging-us.net/2022/08/23/longevity-aging-series-ep-3-dr-steve-horvath-epigenetic-clocks/
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at http://www.Aging-US.com or connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM

Aug 18, 2022 • 13min
3 Domains of Well-Being Extend Elderly Mobility and Longevity
Listen to a blog summary of a trending research paper featured as the cover for Volume 14, Issue 15 of Aging (Aging-US), entitled, "Profiles of behavioral, social and psychological well-being in old age and their association with mobility-limitation-free survival."
_____________________________
Successful, or healthy, aging may be the result of adherence to several protective factors simultaneously within all three of the well-being domains. Previously, the majority of research on healthy aging has been limited to a single domain per study. In a new study, researchers Marguerita Saadeh, Xiaonan Hu, Serhiy Dekhtyar, Anna-Karin Welmer, Davide L. Vetrano, Weili Xu, Laura Fratiglioni, and Amaia Calderón-Larrañaga (from Karolinska Institutet, Karolinska University Hospital, Stockholm University, Lund University, and Stockholm Gerontology Research Center) believe that the vast heterogeneity in aging phenotypes cannot be explained by one domain of well-being alone. On July 18, 2022, their research paper was published on the cover of Aging’s Volume 14, Issue 15, and entitled, “Profiles of behavioral, social and psychological well-being in old age and their association with mobility-limitation-free survival.”
Full blog - https://aging-us.org/2022/08/3-domains-of-well-being-extend-elderly-mobility-and-longevity/
DOI - https://doi.org/10.18632/aging.204182
Corresponding author - Marguerita Saadeh - marguerita.saadeh@ki.se
Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204182
Keywords - aging, mobility, survival, well-being, older adults, successful aging
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - https://soundcloud.com/Aging-Us
Facebook - https://www.facebook.com/AgingUS/
Twitter - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/agingus
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Media Contact
18009220957
MEDIA@IMPACTJOURNALS.COM