
Aging-US
Cancer and aging are two sides of age-related tumorigenesis.
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Read about the Aging (Aging-US) Scientific Integrity Process: https://aging-us.com/scientific-integrity
Latest episodes

Oct 15, 2024 • 4min
Proteomics of Bone Formation in Young-Adult and Old Mice
BUFFALO, NY- October 15, 2024 – A new #research paper was #published on the #cover of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 19 on October 12, 2024, entitled, “A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice.”
As noted in the abstract, bone mass declines with age, and the anabolic effects of skeletal loading decrease. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear.
In their paper, researchers Christopher J. Chermside-Scabbo, John T. Shuster, Petra Erdmann-Gilmore, Eric Tycksen, Qiang Zhang, R. Reid Townsend, and Matthew J. Silva from Washington University School of Medicine and Washington University in St. Louis, Missouri, describe how they developed a novel proteomics approach and conducted paired mass spectrometry and RNA-seq analyses on tibias from young-adult (5-month) and old (22-month) mice.
The researchers report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40). While this is consistent with findings from other tissues, it suggests that only a relatively low amount of variation in protein levels is explained by variation in transcript levels.
Of the 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including the understudied targets Asrgl1 and Timp2. Using complementary RNA in situ hybridization, the researchers confirmed that Asrgl1 and Timp2 showed reduced expression in osteoblasts/osteocytes in aged bones. Additionally, they found evidence of reduced TGF-beta signaling with aging, particularly Tgfb2. The researchers also identified proteomic changes following mechanical loading, noting that at the protein level, bone differed more with age than with loading, and aged bone exhibited fewer loading-induced changes.
"Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.”
DOI - https://doi.org/10.18632/aging.206131
Corresponding author - Christopher J. Chermside-Scabbo - ccherms@wustl.edu
Video short - https://www.youtube.com/watch?v=xm6o7gWH8p4
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206131
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, bone, mechanical loading, proteomics, RNA-seq/transcriptomics
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Oct 8, 2024 • 1h 4min
Longevity & Aging Series (S2, E2): Dr. Ming Yu and Namita Hattangady
In this installment of the Longevity & Aging Series, Dr. Ming Yu and Namita Hattangady from the Fred Hutchinson Cancer Center in Seattle, join host Dr. Evgeniy Galimov to discuss a research paper they co-authored that was published as the cover for Volume 16, Issue 4 of Aging (Aging-US), entitled, “Mapping the core senescence phenotype of primary human colon fibroblasts.”
DOI - https://doi.org/10.18632/aging.205577
Corresponding authors - William M. Grady - wgrady@fredhutch.org, and Ming Yu - myu@fredhutch.org
Video interview - https://www.youtube.com/watch?v=eqSa7My_a7w
Interview transcription - https://www.aging-us.com/interviews/longevity-aging-series-s2-e2-dr-ming-yu-and-namita-hattangady
Abstract
Advanced age is the largest risk factor for many diseases and several types of cancer, including colorectal cancer (CRC). Senescent cells are known to accumulate with age in various tissues, where they can modulate the surrounding tissue microenvironment through their senescence associated secretory phenotype (SASP). Recently, we showed that there is an increased number of senescent cells in the colons of CRC patients and demonstrated that senescent fibroblasts and their SASP create microniches in the colon that are conducive to CRC onset and progression. However, the composition of the SASP is heterogenous and cell-specific, and the precise senescence profile of colon fibroblasts has not been well-defined. To generate a SASP atlas of human colon fibroblasts, we induced senescence in primary human colon fibroblasts using various in vitro methods and assessed the resulting transcriptome. Using RNASequencing and further validation by quantitative RT-PCR and Luminex assays, we define and validate a ‘core senescent profile’ that might play a significant role in shaping the colon microenvironment. We also performed KEGG analysis and GO analyses to identify key pathways and biological processes that are differentially regulated in colon fibroblast senescence. These studies provide insights into potential driver proteins involved in senescence-associated diseases, like CRC, which may lead to therapies to improve overall health in the elderly and to prevent CRC.
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.205577
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, senescence, senescence associated secretory phenotype, SASP, colorectal cancer, cancer
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Oct 8, 2024 • 4min
Cerebral Blood Flow and Arterial Transit in Older Adults
BUFFALO, NY- October 8, 2024 – A new #research paper was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 18 on September 18, 2024, entitled, “Determinants of cerebral blood flow and arterial transit time in healthy older adults.”
This research paper highlights that brain health deteriorates with age, particularly in terms of cerebral blood flow (CBF) and arterial transit time (ATT), key markers of brain vascular health. This decline can impair cognitive function and limit independence in later life—an issue that will affect many as the global population continues to age rapidly.
In their paper, researchers Jack Feron, Katrien Segaert, Foyzul Rahman, Sindre H. Fosstveit, Kelsey E. Joyce, Ahmed Gilani, Hilde Lohne-Seiler, Sveinung Berntsen, Karen J Mullinger, and Samuel J. E. Lucas from the University of Birmingham, University of Agder, and University of Nottingham aimed to identify modifiable determinants of CBF and ATT in healthy older adults (n = 78, aged 60–81 years). They also investigated the relationship between CBF, ATT, and cognitive function in older adults.
The researchers hypothesized that markers of superior general health—such as higher cardiorespiratory fitness, handgrip strength, and grey matter volume, or lower age, BMI, and blood pressure—would be associated with greater CBF and shorter ATT.
Results from multiple linear regressions revealed that a higher BMI was associated with lower global cerebral blood flow (CBF) (β = −0.35, P = 0.008) and longer global arterial transit time (ATT) (β = 0.30, P = 0.017). Additionally, global ATT increased with age (β = 0.43, P = 0.004), while higher cardiorespiratory fitness was linked to longer ATT in the parietal (β = 0.44, P = 0.004) and occipital (β = 0.45, P = 0.003) regions. However, neither global nor regional CBF or ATT were associated with processing speed, working memory, or attention.
“In conclusion, preventing excessive weight gain may help attenuate age-related declines in brain vascular health.”
DOI - https://doi.org/10.18632/aging.206112
Corresponding author - Jack Feron - j.feron@bham.ac.uk
Video short - https://www.youtube.com/watch?v=QpS4kK273os
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206112
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Sep 25, 2024 • 6min
Behind the Study: Cardiac Metabolism in the Elderly
Nadiyeh Rouhi, PhD student in Medical Physiology and Biophysics, Department of Physiology at the University of Mississippi Medical Center (UMMC), Jackson, MS, discusses an editorial she co-authored that was published by Aging (Aging-US) in Volume 16, Issue 16, titled “Cardiac Metabolism in the Elderly: Effects and Consequences."
DOI - https://doi.org/10.18632/aging.206071
Corresponding author - Ji Li - jli3@umc.edu
Video interview - https://www.youtube.com/watch?v=tr-ngN3rl38
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206071
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, metabolism, heart failure, Pdk4
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Aug 27, 2024 • 3min
Trioxidized Cysteine and Aging: Beyond Proteinopathic Paradigms
BUFFALO, NY- August 27, 2024 – A new #research perspective was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 15 on July 25, 2024, entitled, “Trioxidized cysteine and aging: a molecular binomial that extends far beyond classical proteinopathic paradigms.”
Oxidative stress (OS) - characterized by an imbalance between oxidants and antioxidants - leads to the formation of oxidative posttranslational modifications (PTMs), including those involving cysteine (Cys) residues in aging proteomes. Specifically, the formation of trioxidized Cys (t-Cys) results in permanent protein damage. Recent findings in rodents have revealed that irregular regulation of t-Cys residues in the aging proteome disrupts homeostatic phosphorylation signaling, leading to alterations in proteins similar to those caused by phosphorylated serine (p-Ser) residues.
In this perspective, researchers José Antonio Sánchez Milán, María Mulet, Aida Serra and Xavier Gallart-Palau from University Hospital Arnau de Vilanova (HUAV) and University of Lleida (UdL), present novel data, validating the increase of specific t-Cys sites associated with aging in a blood-related circulating human proteome.
"The scope and findings included here support the hypothesis that t-Cys residues may serve as important mechanistic and biological markers, warranting further exploration in the context of unhealthy aging and age-related major diseases.”
DOI - https://doi.org/10.18632/aging.206036
Corresponding authors - Aida Serra - aida.serra@udl.cat, and Xavier Gallart-Palau - xgallart@irblleida.cat
Video short - https://www.youtube.com/watch?v=roO_8WMGak8
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206036
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, oxidative stress, unhealthy aging, t-Cys, aging diseases, aging proteome
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Aug 23, 2024 • 4min
Exploring Links Between Cell Death Pathways and Immune Responses
In this #review, #researchers explore the intricate relationship between various cell death pathways and host immunological responses.
Kuo-Cheng Lu, Kuo-Wang Tsai, Yu-Kuen Wang, and Wan-Chung Hu
from Taipei Tzu Chi Hospital, Fu Jen Catholic University, Taoyuan Armed Forces General Hospital, Tri-Service General Hospital and Ming Chuan University, have delved into the literature surrounding cell death pathways and their connections to host immunological pathways.
Their review was published as the cover paper of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 15, entitled, “Types of Cell Death and Their Relations to Host Immunological Pathways.”
Full blog - https://aging-us.org/2024/08/exploring-links-between-cell-death-pathways-and-immune-responses/
Paper DOI - https://doi.org/10.18632/aging.206035
Corresponding author - Wan-Chung Hu - Wanchung.Hu09@tzuchi.com.tw
Video short - https://www.youtube.com/watch?v=oPaevm0vpR8
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206035
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, apoptosis, autophagy, ferroptosis, necroptosis, NETosis, pyroptosis
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Aug 21, 2024 • 3min
Impact of Exercise on Aging: Highlighting Muscle Biomarkers
BUFFALO, NY- August 21, 2024 – A new #editorial was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 15 on August 8, 2024, entitled, “The benefits of exercise on aging: focus on muscle biomarkers.”
The focus on maintaining health and vitality (e.g., good healthspan) in later life has become increasingly important as the world’s population ages. Over the past few decades, groundbreaking research in the field of aging has deepened our understanding of the molecular basis of this process. In the last decade, advances in aging research have identified biomarkers such as DNA methylation (DNAm) and gene expression, offering insights into both chronological and biological aging.
Researchers Robin Grolaux, Bernadette Jones-Freeman, Macsue Jacques, and Nir Eynon from the Australian Regenerative Medicine Institute at Monash University in Melbourne, explore the impact of exercise on these biomarkers in human skeletal muscle—a critical tissue for metabolism, thermogenesis, and movement—revealing its potential to foster healthier aging.
This study represents the first quantitative and qualitative analysis of the effects of exercise on age-related biomarkers in human skeletal tissues. Future research could explore the global effects of exercise on various molecular pathways and differentiate between exercise types to develop more effective personalized therapies.
“We have the opportunity to uncover functional therapies that effectively impact aging.”
DOI - https://doi.org/10.18632/aging.206064
Corresponding Author - Nir Eynon - nir.eynon@monash.edu
Video short - https://www.youtube.com/watch?v=Dhiq2I0sW1U
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206064
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, skeletal muscle, exercise, epigenetics, OMICs, biomarkers
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Aug 20, 2024 • 3min
How Physical Fitness and Lifestyle Impact Biological Aging
BUFFALO, NY- August 20, 2024 – A new #editorial was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 15 on July 19, 2024, entitled, “Physical fitness and lifestyles associated with biological aging”.
Given the growing aging population worldwide, it is crucial to develop interventional strategies that target aging itself, rather than focusing solely on organ- or disease-based medicine. The geroscience hypothesis, which suggests that delaying aging can prevent the onset of diseases, is gaining traction due to advancements in aging biomarkers, driven by improvements in both measurement techniques (e.g., omics) and analytical technologies (e.g., bioinformatics).
In their editorial, researchers Takuji Kawamura, Radak Zsolt, Mitsuru Higuchi, and Kumpei Tanisawa from the Faculty of Sport Sciences at Waseda University and the Research Center for Molecular Exercise Science at Hungarian University of Sports Science, emphasize the importance of investigating the relationship between cardiorespiratory fitness (CRF) and the DNA methylation (DNAm) aging clock. Their goal is to establish fitness reference values that could help delay aging. They also discuss their recent report on the "Associations between cardiorespiratory fitness and lifestyle-related factors with DNA methylation-based aging clocks in older men: WASEDA’S Health Study."
"Our study reinforces the geroscience concept that active lifestyle choices may impact quantifiable molecular biomarkers that capture biological aging.”
DOI - https://doi.org/10.18632/aging.206031
Corresponding author - Takuji Kawamura - takuji3@aoni.waseda.jp
Video short - https://www.youtube.com/watch?v=-j_MaL8G4eo
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206031
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, DNA methylation, epigenetic clock, physical fitness, anthropometry, blood biochemical parameters, nutritional intake
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Aug 16, 2024 • 3min
Cell Death Types and Their Relations to Host Immune Pathways
BUFFALO, NY- August 16, 2024 – A new #review was #published as the #cover paper of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 15, entitled, “Types of cell death and their relations to host immunological pathways”.
Various immune pathways in the host, such as TH1, TH2, TH3, TH9, TH17, TH22, TH1-like, and THαβ, have been identified. While TH2 and TH9 responses primarily target multicellular parasites, host immune pathways against viruses, intracellular microorganisms (like bacteria, protozoa, and fungi), and extracellular microorganisms utilize programmed cell death mechanisms to initiate immune responses and effectively eliminate pathogens.
In their review, researchers Kuo-Cheng Lu, Kuo-Wang Tsai, Yu-Kuen Wang, and Wan-Chung Hu from Taipei Tzu Chi Hospital, Fu Jen Catholic University, Taoyuan Armed Forces General Hospital, Tri-Service General Hospital and Ming Chuan University, reviewed these cell death pathways associated with the host immunological pathways.
"These relationships can help us understand the host defense mechanisms against invading pathogens and provide new insights for developing better therapeutic strategies against infections or autoimmune disorders.”
DOI - https://doi.org/10.18632/aging.206035
Corresponding authors - Wan-Chung Hu - Wanchung.Hu09@tzuchi.com.tw
Video short - https://www.youtube.com/watch?v=oPaevm0vpR8
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206035
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, apoptosis, autophagy, ferroptosis, necroptosis, NETosis, pyroptosis
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM

Aug 14, 2024 • 3min
Recalibrating Principles of Epigenetic Aging Clocks in Human Health
BUFFALO, NY- August 14, 2024 – A new #editorial was #published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 14 on July 17, 2024, entitled, “Recalibrate concepts of epigenetic aging clocks in human health.”
As detailed in the opening of this editorial, DNA methylation-based epigenetic clocks are used as biomarkers of biological age in human health. Multiple epigenetic clocks have rapidly emerged in the past decade by modeling DNA methylation changes with age in large cohorts, primarily using peripheral blood samples. Despite efforts to understand the functional implications of features used to estimate biological age, the underlying mechanisms of these clocks remain poorly understood, leading to potential misinterpretations of their associations with health outcomes.
Researchers Ze Zhang, Brock C. Christensen, and Lucas A. Salas from the Divisions of Population Sciences and Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, the Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, and the Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College explored the association of 12 immune cell types with epigenetic age acceleration (EAA) in both healthy and diseased populations.
Their work sheds light on the complex interplay between immune cell composition and epigenetic aging, utilizing high-resolution methylation cytometry in blood samples.
“In this editorial, we aim to address the key implications of our study on epigenetic aging clocks in human health from a broader perspective. While epigenetic clocks are widely hyped as aging biomarkers today, it's essential to recalibrate some fundamental concepts in this field.”
DOI - https://doi.org/10.18632/aging.206027
Corresponding author - Lucas A. Salas - lucas.a.salas@dartmouth.edu
Video short - https://www.youtube.com/watch?v=9lV-pkYm22M
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206027
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts
Keywords - aging, epigenetics, DNA methylation, epigenetic clock, epigenetic age acceleration, methylation cytometry
About Aging-US
The mission of the journal is to understand the mechanisms surrounding aging and age-related diseases, including cancer as the main cause of death in the modern aged population.
The journal aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Please visit our website at https://www.Aging-US.com and connect with us:
Facebook - https://www.facebook.com/AgingUS/
X - https://twitter.com/AgingJrnl
Instagram - https://www.instagram.com/agingjrnl/
YouTube - https://www.youtube.com/@AgingJournal
LinkedIn - https://www.linkedin.com/company/aging/
Pinterest - https://www.pinterest.com/AgingUS/
Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc
MEDIA@IMPACTJOURNALS.COM