The POWER Podcast
POWER
The POWER Podcast provides listeners with insight into the latest news and technology that is poised to affect the power industry. POWER’s Executive Editor Aaron Larson conducts interviews with leading industry experts and gets updates from insiders at power-related conferences and events held around the world.
Episodes
Mentioned books

Apr 13, 2023 • 23min
132. How an EMP or GMD Could Destroy the Power Grid and Create Chaos
Perhaps the most devastating thing that could happen in any developed country would be widespread catastrophic damage to its electric power grid. Nearly everything in an industrialized nation relies on electricity to function. Without it, normal water supplies, sewer systems, and communication services are cut off. Furthermore, things like food and transportation are quickly affected when power is down for extended periods.
A severe electromagnetic pulse (EMP) or geomagnetic disturbance (GMD) event could take the power grid down for months, and possibly even for years. An EMP is a very intense pulse of electromagnetic energy, typically caused by the detonation of a nuclear bomb or other high-energy explosive device. A GMD, meanwhile, can be caused when a solar eruption produces a coronal mass ejection (CME) that travels from the sun to the Earth. A direct hit by an extreme CME would cause widespread power blackouts disabling everything that uses electricity. Some experts have suggested that a major EMP or GMD hit could result in the death of up to 90% of the U.S. population.
What makes the event so devastating is that the U.S. power grid is not well-protected from such a strike, and the country is not prepared to recover quickly. Dr. William R. Forstchen, author of more than 40 books including the groundbreaking novel One Second After, which has been credited with raising national awareness to the potential threat posed by an EMP strike, explained the situation as a guest on The POWER Podcast.
Forstchen noted that the U.S. power grid is vulnerable to such an event for a number of reasons. “The average component in our electrical grid is 40 to 50 years old. We are running our electricity on a 1970s, early-1980s industry. We’re not modernizing it,” he said.
A few years ago, the federal government began to address the problem. “The Trump administration finally started taking action about six months before the election in 2020. They mandated DOD [the Department of Defense], DOE [the Department of Energy], all the different agencies to submit a comprehensive analysis of what needs to be done that would then follow by legislative action in the next Congress,” Forstchen explained. However, when Trump lost the election, President Biden immediately killed the initiative, he said.
Forstchen said relatively minor investments could vastly improve the situation. He suggested stockpiling key components is an important first step. “A large transformer for a major substation can cost several million dollars. From the time of ordering one until the big truck pulls up and we start to unload it is two or more years,” Forstchen said. Furthermore, he noted that most of the equipment and components that might be needed to repair the grid are now sourced from other countries, mainly China, which means the U.S. may not be able to get supplies, especially if the attack was initiated by one of those countries. “We should be building a strategic reserve of key electrical components,” he said.
Additionally, Forstchen said the U.S. should focus on a “lifeline to recovery.” He suggested hardening 10% of the grid could act as an insurance policy for the nation. “Let’s say the rest goes down, but we have those lifelines out there that can be used to start repairing things, bringing supplies, and communicate—big thing, communication and transportation,” said Forstchen. Risks could be substantially reduced with relatively minor investments. “I argue $20 to $30 billion a year would at least start ensuring some responsible response to this problem,” Forstchen said.

Mar 30, 2023 • 18min
131. Offshore Wind and Green Hydrogen Offer Great Opportunities for Gulf Coast States
The U.S. Gulf Coast offers some of the greatest potential for renewable energy development in the country. According to a National Renewable Energy Laboratory (NREL) study, Florida, Texas, and Louisiana rank second, third, and fourth, respectively, in net technical energy resource potential for offshore wind. The large energy resource in these three southern states is attributed to a large quantity of ocean area that encompass relatively long coastlines and wide continental shelves.
Greater New Orleans Inc. (GNO) is the regional economic development nonprofit organization serving the 10-parish region of Southeast Louisiana that includes Jefferson, Orleans, Plaquemines, St. Bernard, St. Charles, St. James, St. John the Baptist, St. Tammany, Tangipahoa, and Washington parishes. GNO is keenly focused on developing a thriving offshore wind industry in its region. Among the initiatives it oversees is the GNOwind Alliance, which is comprised of more than 180 organizations that GNO says “provide the expertise to grow the region and state as an energy leader.”
“[The GNOwind Alliance] was really launched with the understanding that there was a lot of activity and a lot of interest in the forthcoming leases in the Gulf of Mexico around wind development, and recognizing that not only do we have this lease potential in the Gulf of Mexico, but we also have this incredible industrial base across south Louisiana to connect some of this green energy to,” Lacy McManus, executive director of Future Energy at GNO Inc., said as a guest on The POWER Podcast.
McManus suggested that south Louisiana’s history with the oil and gas industry positions it to quickly adapt and capitalize on the offshore wind potential. She said many of the services that are going to be needed—the labor profiles, the workforce, and even some of the policy and regulatory experience necessary to develop the wind sector—borrow from the oil and gas industry. “We have a lot of that already in our landscape,” said McManus. “It’s where we are fortunate because I think that’s going to really catalyze a lot of our activity, and add to the momentum, and the speed and efficiencies with which we’re able to deliver to companies and industries coming in.”
GNOwind Alliance is already supporting workforce programs that train workers to transfer skills from oil and gas to wind energy through a partnership with academic and industry allies. “We work hand in glove with our higher education landscape here in Louisiana, but specifically at GNO Inc., we have a fantastic relationship with both LCTCS, which is the Louisiana Community and Technical College System, as well as with the Board of Regents, who oversees all of our higher education institutions,” McManus said.
GNO leadership made the decision about a decade ago to have all of the presidents of the four-year schools in the Greater New Orleans region, and all the chancellors of the two-year community colleges in the region, on its board of directors. “For the last 10-plus years, all of that higher ed leadership has been sitting in the same room with all of the business leadership in the region on a monthly basis at our board meetings. They get the scoop and the understanding, and hear straight from the horse’s mouth on new announcements that we have coming in,” said McManus.
Beyond offshore wind, McManus sees opportunity for southeastern Louisiana in the green hydrogen economy. “Louisiana and our industry base actually consumes one-third of the nation’s hydrogen. So, that’s a lot of gray hydrogen that’s currently going into our industrial footprint,” said McManus. “With the opportunity to develop more wind in the Gulf, we have a really unique, in my view, sort of once in a generation chance to shift some of that gray hydrogen that we’re currently using in our industrial footprint over to green hydrogen.”

Mar 23, 2023 • 26min
130. Henry Ford, J.P. Morgan, and FDR: Big Players in U.S. Hydropower History
You may not expect to hear names like Henry Ford and J.P. Morgan mentioned when studying the history of hydropower. You might know that President Franklin Delano Roosevelt signed the Tennessee Valley Authority Act in 1933, establishing the Tennessee Valley Authority (TVA), which has 29 power-generating dams in its power system, but you may not realize how much of a role FDR played in other hydropower projects. It’s frankly an understatement to say all three of these men were hugely important in the development of U.S. hydropower.
“I almost guarantee that most people do not realize that Henry Ford was such a significant player. He was a strong proponent of hydropower. He looked at water as free,” Bob Underwood, author of the book DAM IT! Electrifying America and Taming Her Waterways, said as a guest on The POWER Podcast. “He was experimenting with hydropower from the time he was a kid. He went on to develop 30 different hydroelectric facilities—small and large.”
Underwood explained that Ford was also part of a major hydropower battle. It involved the Wilson Dam near Muscle Shoals, Alabama, a small town located on the southern bank of the Tennessee River. President Woodrow Wilson had authorized construction of the Wilson Dam in 1916. The hydropower plant was intended to provide electricity for a munitions facility that was supporting the war effort during World War I, but the war ended before the dam was completed.
Construction on the project languished after the war while Congress debated what to do with the property. Some senators wanted to sell the dam to a private company while others thought the government should retain public control of the property. Henry Ford made a surprise inspection tour of the Muscle Shoals facilities and the Wilson Dam site in June 1921. A month later, he submitted a bid for all the federal properties associated with the site.
“And that’s where he got into it with Senator Norris [from Nebraska], and that went on for four or five years,” said Underwood. Norris was one of the biggest public power advocates around. Although technically a Republican, Norris was fiercely independent and regularly collaborated with FDR, a Democrat. “[Ford] lost, but that sure elevated the view of hydropower in this world,” said Underwood.
Although J.P. Morgan passed away a little over a year before World War I began, he played an important role in the history of hydropower during his lifetime. Underwood said even he didn’t realize how influential J.P. Morgan was to the electric power generation industry before he started doing research for his book. He said Morgan was pulling strings behind the scenes, not only in the electrical business, but in everything else that was going on in his day. “He was always trying to build a monopoly in whatever industry it was,” said Underwood.
“He manipulated Edison to merge another company of the time—a big competitor, Thomson-Houston—into Edison General Electric to form General Electric, essentially shoving Edison aside and out of his own company. And J.P. Morgan kept having huge influence through the financing of the industry—both the hydroelectric side of it, as well as the coal-fired side of it,” Underwood explained.
But when it comes to big hydro projects, FDR gets much of the credit for making them happen. “He changed the industry,” Underwood said on the podcast. “Very influential.”
Among FDR’s significant hydropower accomplishments are two projects on the Columbia River: Bonneville and Grand Coulee. Four months after taking office in March 1933, FDR was able to cut through years of conflicts to get construction underway. Underwood wrote in his book, “His actions clearly established federal authority over the waters of the West."

Mar 16, 2023 • 27min
129. Microgrids Provide Reliable Power During Emergencies and Help Decarbonize the Grid
Microgrids are localized power grids that can be disconnected from the traditional grid to operate autonomously. Because they are able to operate while the main grid is down, microgrids can strengthen resilience and help prevent grid disturbances. They also function as a reliable resource for faster system response and recovery.
Microgrids enable the integration of more distributed energy resources, including renewable energy such as rooftop solar and batteries. Additionally, the use of local energy resources to serve local loads helps reduce energy losses in transmission and distribution, further increasing efficiency of the electric delivery system. Furthermore, microgrids provide vital service during emergencies and after severe storms.
When power was knocked out in many parts of Texas during Winter Storm Uri in 2021, many of H.E.B.’s grocery stores were able to keep the lights on, and refrigerators and freezers operating, because they had invested in microgrids. “This may not seem like a big deal, but for the local communities where they may not have access to the basics, like food and water, having that store continue to operate and provide services for customers is huge in order to help them get through those kinds of events,” Paul Froutan, Chief Technology Officer with Enchanted Rock, said as a guest on The POWER Podcast.
Enchanted Rock is a company that was founded in 2006. It calls itself “a leader in electrical resiliency-as-a-service, powering companies, critical infrastructure, and communities to ensure operational continuity during unexpected power outages from extreme weather, infrastructure failures, cyberattacks and other grid disruptions.” Enchanted Rock’s dual-purpose microgrids use natural gas and renewable natural gas (RNG) offsets to produce significantly lower carbon emissions and air pollutants than diesel generators. Additionally, the company’s end-to-end microgrid software platform, GraniteEcosystem, provides real-time 24/7/365 system monitoring and optimization, including forecasting of electricity market conditions, to ensure reliable power is delivered to customers.
Microgrids can provide value even when there’s not an emergency. “In other situations that may not be as severe, offering the capability to remove loads off the grid essentially creates additional capacity for everyone,” Froutan said. “So, you can look at it in the sense that, if we can get big loads off the grid, that power can go and serve the rest of the users in the community that don’t have that capability.”
Among the technology utilized in Enchanted Rock’s microgrids are solar panels, fuel cells, and batteries. But perhaps what adds the most reliability to the system is natural gas–fired generators. “We end up relying on the natural gas generator because they’re one of the few elements available on demand but you can run it indefinitely, effectively, even in situations where there are major events,” said Froutan.
Notably, the use of RNG allows a microgrid to remain “green.” Froutan said RNG is “the most interesting thing not talked about” when people discuss a carbon-neutral future. “There is a very good option of renewable natural gas out there that is available today, and depending on the approach, you can actually get a negative carbon index on use of those fuels,” he said. “So, it’s a very appealing option … that is easy, makes sense, and can be implemented right away.”

Mar 8, 2023 • 20min
128. Help Wanted: Retirements and the Energy Transition Lead to Job Openings in the Power Industry
It seems like industry insiders have been lamenting the aging power workforce for decades. Yet, there is still a large percentage of workers in the current workforce that are retirement eligible—some studies suggest the percentage is as high as 40%. Meanwhile, the energy transition has created a large number of new jobs building and operating solar and wind farms, enhancing infrastructure, and developing and deploying energy efficiency programs. What that means is there are a lot of open positions to be filled throughout the power industry.
“Right now, we have active close to 500 postings for positions,” Sheila Rostiac, senior vice president for Human Resources, Chief Human Resources Officer, and Chief Diversity Officer with Public Service Enterprise Group Inc. (PSEG), said as a guest on The POWER Podcast. “Those jobs run the continuum of opportunities at our company from skilled craftworkers, laborers, customer service representatives, engineers, project managers, and certainly IT [information technology] and cyber experts,” she said.
PSEG is a diversified energy company headquartered in Newark, New Jersey. Established in 1903, the company’s principal operating subsidiaries are: Public Service Electric and Gas Co. (PSE&G), PSEG Power, and PSEG Long Island. PSE&G is New Jersey’s largest provider of electric and natural gas service—serving 2.3 million electric customers and 1.9 million gas customers. PSEG Power is an energy supply company that integrates the operations of its nuclear generating assets with its fuel supply functions. PSEG Long Island operates the electric transmission and distribution system of the Long Island Power Authority, which includes about 1.1 million customers. PSEG has approximately 12,500 employees.
The jobs PSEG has available are open for a number of reasons. “I had a turnover rate on retirements of about 3% last year, and so backfilling those skilled workers is part of our opening and our routine operation,” said Rostiac. “At the same time, on the growth standpoint, you know the industry is going through an incredible transformation, and we—PSEG—are doing significant capital work across the state, upgrading our gas systems, upgrading and fostering resilience in our electric systems, and managing opportunities with our nuclear business. So, some of those jobs are providing new opportunities in growth of our business,” she said.
Rostiac suggested interest in job openings has been good. “Our brand is well-known and our reputation as a great place to work really does afford us strong interest,” she said. However, there’s stiff competition for well-qualified candidates. “We are competing with hosts of other companies, both in the state and really across the nation, for some of those top skills that everybody is looking for—particularly in the technology areas of IT and cyber,” she said.
PSEG has won a few awards to back up Rostiac’s claim that the company provides a great working environment. Earlier this year, PSEG was named one of America’s “Most JUST Companies,” an annual analysis from nonprofit JUST Capital ranking companies on issues that supposedly matter most to Americans when it comes to corporate leadership. PSEG ranked fourth overall out of 39 national utilities evaluated in the survey. PSEG ranked as the second-highest utility in employee work-life balance. And among all industries evaluated by JUST, PSEG ranked in the top 100 for workforce advancement.
“It is an incredibly exciting time to come to work in the energy industry,” said Rostiac. “The range of career opportunities with life-changing wages and the ability to grow and be part of an industry that is essential, empowering the lives of the communities and businesses around, it’s certainly a high-calling purpose and I hope that future generations see themselves as wanting to be a part of that.”

Feb 7, 2023 • 24min
127. Cutting Costs with Technology-Driven Improvements
If you’ve been in the power industry workforce for any significant length of time, you may have asked your supervisor at some point “Why am I doing this?” regarding a task that you were assigned, only to have them respond, “We’ve always done it this way.” That’s because the power industry has a reputation for being stuck in its ways of doing things. As long as a process is safe, reliable, and reasonably cost-effective, the feeling is often, “Why change?”
But just because something works, doesn’t mean its efficient or the best practice. Sometimes you have to step back and consider, “Is there a better way?” And sometimes you have to spend money to make money. The old English saying goes, “Penny-wise and pound-foolish,” which is intended to keep people from being too careful with small amounts of money, while missing out on large windfalls.
Implementing new technology typically requires an initial investment, which in many cases can seem substantial. For power companies, that often means justifying the expense to the purse-string holders.
“If we think about the focus on operating expense [OpEx] versus capital, within the U.S. sector at least, looking at leveraging cloud or other SaaS [Software-as-a-Service] solutions that may come across as an unwelcome operating expense can definitely hinder the speed of adoption of some of these newer technologies,” Casey Werth, general manager for the Energy industry with IBM Technology, said as a guest on The POWER Podcast. “We work closely with a lot of our clients on how to address these and build out business cases that can show that even if you have an increase in OpEx, for instance, the downstream reduction of OpEx cost far outweighs the OpEx increase of the solution.”
Werth offered an example based on IBM’s Vegetation Management solution, which he helped a transmission and distribution (T&D) customer implement. “Veg management is a massive operating expense on any T&D operator’s budget that can be optimized or improved upon to have a better outcome,” Werth said.
IBM’s website touts Vegetation Management as an end-to-end solution that leverages artificial intelligence (AI), satellite images, Light Detection and Ranging (LiDAR), and more to regularly assess and monitor vegetation. It says the solution helps improve work prioritization and decision-making from planning all the way through work inspection and auditing.
Werth said IBM has leveraged “advanced technology to better automate the identification of potential areas of risk due to foliage, and then helping better plan and then audit those veg processes to ensure the best outcome for our clients.” Texas-based Pedernales Electric Cooperative is reportedly a satisfied customer. It expects to reduce the number and severity of vegetation-related outages, improve safety and reliability, and cut overall vegetation management costs by having implemented the solution.
Among other ways Werth said technology can improve operations is through “process mining.” The goal of process mining is to gain complete process transparency using data from a business’s own software systems, such as ERP (Enterprise Resource Planning) and CRM (Customer Relationship Management) software. Process mining also aims to pinpoint inefficiencies and prioritize automation by impact and expected return on investment to drive continuous process improvements. It does that by triggering corrective actions or generating Robotic Process Automation (RPA) bots.
“If we could identify four or five steps of a discrete process that could be either automated or removed, the potential OpEx savings, or just operational efficiency from that process on the other side, has really powerful impacts,” said Werth. “But, if you can’t run the tools to find those wins, then that win sort of stays hidden.”

Jan 30, 2023 • 23min
126. Is Delivering 100% Renewable Energy on an Hourly Basis at Cost-Competitive Rates Achievable?
Cynics might argue that it’s impossible to operate the power grid economically with 100% renewable energy on an hourly basis, but a model developed by Peninsula Clean Energy, a community choice aggregation agency that serves San Mateo County and the City of Los Banos, California, suggests it’s possible. To prove it, Peninsula Clean Energy intends to do it by 2025.
“Our default product, which all of our customers receive at this time, is 50% renewable, 100% clean,” Jan Pepper, CEO of Peninsula Clean Energy, said as a guest on The POWER Podcast. “Our goal is to have the power that we deliver by 2025 be 100% renewable, and matched on a time-coincident, hour-by-hour basis.”
Under current California regulations, renewable energy percentages are matched on an annual basis. “For example, if we have a 3,700 gigawatt-hour load, for us to be 50% renewable, which we are right now, we procure 1,850 gigawatt-hours per year of renewables and 1,850 gigawatt-hours of additional clean resources, which for us is large hydro, and that meets our needs on an annual basis,” Pepper explained.
That basically means there are times when Peninsula Clean Energy is supplying more than 50% renewable power to its customers and times when it’s supplying less, but over the course of the year, everything averages out so the agency hits its 50% renewable energy target. However, by 2025, the agency expects to match its supply with its load every hour of every day. “In order to do that, we’ll be adding a lot of storage,” said Pepper.
Peninsula Clean Energy’s modeling tool, which it calls MATCH (which stands for Matching Around-The-Clock Hourly energy), was built, tested, and used over the past two years. The goal was for the agency to determine the optimal 24/7 renewable energy portfolio. Leaders wanted to know how much it would cost, the level of emission reduction benefits that could be achieved, and the impacts it might have on the broader energy system.
A team of workers, which included Planning and Analytics Manager Mehdi Shahriari, Power Resources and Compliance Manager Sara Maatta, and Greg Miller from the University of California, Davis, started with an open-source model called the “Switch Power System Planning Model” and modified it significantly to create MATCH. Using the model, the team outlined in a 44-page white paper how matching customer electricity demand with renewable energy supply 99% of the time achieves the ideal balance of being cost-competitive, reducing portfolio risk, and reducing emissions.
“We find that a ‘sweet spot’ goal of providing 100% renewable energy on a 99% time-coincident basis results in only a 2% cost increase relative to our baseline, while achieving critical emission reductions and providing other benefits to the grid,” the team wrote in the report’s executive summary. “We were pleasantly surprised,” said Pepper.
However, while achieving the last 1% is doable, it’s not quite as practical. “Our model also found there are diminishing returns in trying to match the last 1% of customer demand, with a 10% increase in portfolio cost needed to go from 99% time-coincident to 100% time-coincident,” the report says.
“We’re excited about what the future holds and being able to show that we can do this in a cost-effective way, so that we can all have a much more sustainable and clean energy future,” Pepper concluded.

Nov 17, 2022 • 16min
125. Fish Friendly Hydro: Natel Energy Is Proving It's Possible
Hydropower projects frequently face resistance from environmental groups for a variety of reasons. One of the more common objections to hydro is the high turbine-induced mortality of fish.
However, Natel Energy, an Alameda, California–based hydro turbine developer and independent power producer, has shown that improving hydro turbine designs could be the ultimate answer to the problem. It has developed the Restoration Hydro Turbine (RHT), a compact hydroelectric turbine that couples high performance with safe through-turbine fish passage.
“Our thesis was that if we can make it safe for fish to move through hydropower facilities in a straightforward and easy way, then we can support reimagining hydropower overall, in a bit more of a distributed approach, but one where these projects actually also help to maintain passage and river connectivity,” Gia Schneider, co-founder and CEO of Natel Energy, said as a guest on The POWER Podcast. “Core to making that vision possible is a fish-safe turbine.”
The RHT is optimized for low head (from 2 meters to 20 meters) and doesn’t require fine fish screens. The design’s thick, slanted blades transport fish away from the leading edge into wide inter-blade regions and downstream to the outlet. The progressive slant of the blades from hub to tip also minimizes the likelihood of severe strike and eliminates the risk of entrapment between moving and stationary parts.
Schneider understands the challenges presented by multiple projects in a watershed or river. “If you’re in a watershed where you, say, have 10 projects down a river, then that means you need to be greater than 99% safe through each individual passage—each individual turbine—in order to achieve [an acceptable] population survival dynamic,” Schneider said. “And so, core for us is we want to achieve greater than 99% safe passage. We’ve kind of set that as an overall target. [It] doesn’t need to be quite that strict if you have fewer projects on a river, but it’s a good rule-of-thumb metric to aim for. And, then, we also want to be highly efficient, so up to 94% efficient from a power generation perspective.”
The results achieved during intense testing have been phenomenal. In a recently released, peer-reviewed paper, the findings from an eel passage study were documented. “We’ve been able to actually show 100% passage of eel through our turbines, and with some pretty extreme conditions,” Schneider said. “We’re talking eel that are basically as long as the diameter of the turbine that they are going through—so fairly large eel relative to the size of the turbine—and where that turbine is spinning at 600, 700 rpm.”
Schneider said it’s really important to get that kind of data, because it helps substantiate the design with real results, showing it’s truly possible to design for high fish passage and high energy production at the same time. Natel has conducted several other studies, some with the Pacific Northwest National Laboratory (PNNL), with similarly impressive results.
Earlier this year, a Natel/PNNL test of 186 large rainbow trout—measuring up to 500 millimeters (19.7 inches) in length—found no meaningful difference between the fish passed through Natel’s 1.9-meter-diameter (roughly 6 feet) turbine and a control group, indicating that the RHT allows safe passage of some of the largest fish ever successfully passed through a compact hydro turbine. Earlier tests of smaller rainbow trout passed through Natel’s turbine demonstrated 100% survival.

Nov 3, 2022 • 24min
124. How Rural Communities Can Benefit from the Energy Transition
Economic development can be a challenge for leaders in rural communities. Often, it’s hard to attract businesses to rural areas because the local workforce may not have the skills or numbers to meet companies’ needs. But opportunities that haven’t been widely available in the past exist today for rural communities due to the energy transition that is sweeping the nation.
“The potential for rural communities is really enormous,” L. Michelle Moore, CEO of Groundswell (a nonprofit that builds community power by connecting solar and energy efficiency with economic development, affordability, and quality of life) and author of the book Rural Renaissance: Revitalizing America’s Hometowns through Clean Power, said as a guest on The POWER Podcast.
For example, Moore explained that nearly $10 billion is available to rural electric cooperative utilities through the U.S. Department of Agriculture (USDA) to build clean energy projects. She also noted how rural communities can benefit from electric vehicle (EV) tax credits, and from credits designed to encourage installation of EV chargers in rural areas. There are also great incentives for energy efficiency improvements, such as for adding insulation to homes or installing more efficient heating and cooling systems.
“The opportunities for rural America are really, really myriad,” Moore said. “And, you know what, you can’t offshore construction jobs. So, implementing both energy efficiency [improvements]—whether it’s insulation in the attic or the air conditioning system—those are all activities that are going to keep local people at work.”
Moore is a strong supporter of rural electric cooperatives and believes they have a large role to play in economic development in rural communities. “So many people don’t know or have never experienced the tremendous power and potential of rural electric cooperatives,” she said.
“The people who buy their electricity from rural electric cooperative utilities actually own the utility, and they also participate directly in its governance. The boards of rural electric cooperative utilities are meant to be democratically elected by co-op members. So, it’s really energy democracy in practice when co-ops are working at their best,” explained Moore. “There are more than 900 of them around the country, and they serve more than half of America’s landmass. And they serve tens of millions of customers as well. So, they really could be the heroes of local clean energy futures.”
When asked where rural communities can get the biggest bang for their buck, Moore responded, “As unsexy as it can sound, energy efficiency is a really important place to start, and that is because rural energy burdens are so high. You know, a lot of rural housing just needs repairs, maintenance, and upgrades, much of which can be paid for with energy efficiency over time.”
But Moore said there are other ways rural communities can benefit from the energy transition. “The second thing that I would really encourage rural communities to look at is solar and energy storage, which is going to help to increase the resilience of your community,” she said. “Today, those technologies are much more available, and the Inflation Reduction Act has all kinds of grant funding and tax credits and rebates that help to pay for them and help to get them out into communities, including rural towns that may not have the dollars in their pocket today to be able to invest in the technology that they need without some additional support coming in from other places.”

Oct 25, 2022 • 18min
123. A Pillar in the Community and Collaborator Around the World: DLC Lights Pittsburgh
The Duquesne Light Co. (DLC) may not be among the best-known electric power companies in the U.S., but for its customers in Allegheny and Beaver counties in southwestern Pennsylvania, the company has been a steady presence in the community for more than a century.
“We are a Pittsburgh-based utility company. We’ve been in operation for over 140 years, serving the Pittsburgh area,” Kevin Walker, CEO of DLC, said as a guest on The POWER Podcast. “We are very entwined with our community, doing a lot of community service and corporate giving. And since we’re a small but mighty utility, we know, live, and work with all of our customers. I see many customers in the supermarket and in the barber shop and those kinds of places. And so, I love to feel that we are really making an impact for the people we know and serve.”
Pittsburgh was the site of the Global Clean Energy Action Forum (GCEAF) in late September. Delegates from around the world gathered at the event hosted by the U.S. Department of Energy and Carnegie Mellon University. It was the first time the GCEAF was held in the U.S.
The three-day event featured high-level plenary sessions and topical roundtables with energy and science ministers, CEOs, and other experts and leaders (Figure 1). There were also various side events, technology demonstrations, and other activities throughout the week. Walker was a member of the host committee.
“We’re still riding the high off of that event. It was so exciting to have people from across the globe, here in Pittsburgh, really, to showcase the evolution and continuing evolution of Pittsburgh,” Walker said. “It was a great knowledge share both ways. We learned things from around the globe, as well as sharing our wisdom with folks around the globe.”
Walker said innovation and creativity are in Pittsburgh’s DNA, as is a willingness to collaborate. “I think that’s our secret sauce here as a region—we really collaborate well and there’s a low-to-no barrier to the folks helping each other,” he said. Walker felt the collaborative spirit extended to attendees from across the globe during the event and has continued even after the conference ended.
DLC has collaborated with other power companies, too. In late July, for example, the company announced that Commonwealth Edison (ComEd), an Exelon Corporation unit, and Pacific Gas and Electric Co. (PG&E) had joined the first phase of DLC’s public crowdsourcing innovation challenge, called “Monitoring Electrical Cable Challenge: The Future of Underground Inspection.” The challenge was devoted to creating a more reliable and safer underground electric network in the Pittsburgh region.
With a total prize of $750,000, the challenge was shared with entrepreneurs, researchers, scientists, students, and more, and it drew submissions from around the world. ComEd and PG&E are collaborating with DLC in two areas: guiding the challenge finalists on solution testing and evaluating the phase-one results. The winning solution is expected to strengthen the underground electrical grid and improve worker and public safety in DLC’s service territory, with the potential for further implementation in ComEd’s and PG&E’s networks.
Yet, if you look at DLC’s website, the first thing listed under its “About Us” heading is “Community,” and Walker seems well-focused on that aspect. “We just really have this giving spirit and we want to be an important partner for our community,” he said. Part of that includes charitable giving, while addressing social and economic inequities, workforce development, and sustainable communities also play a role.
DLC has also made efforts to improve supplier diversity and work with more local suppliers. “Oftentimes, we have national and even international diverse suppliers. That is good, but it doesn’t put money back into our community. So, we’re happy and proud with the advancements we’ve made there,” Walker said.


