

The New Quantum Era - innovation in quantum computing, science and technology
Sebastian Hassinger
Your host, Sebastian Hassinger, interviews brilliant research scientists, software developers, engineers and others actively exploring the possibilities of our new quantum era. We will cover topics in quantum computing, networking and sensing, focusing on hardware, algorithms and general theory. The show aims for accessibility - Sebastian is not a physicist - and we'll try to provide context for the terminology and glimpses at the fascinating history of this new field as it evolves in real time.
Episodes
Mentioned books

Feb 2, 2026 • 46min
Quantum Leadership with Nadya Mason
What happens when a former elite gymnast with “weak math and science” becomes dean of one of the world’s most influential quantum engineering schools? In this episode of *The New Quantum Era*, Sebastian Hassinger talks with Prof. Nadya Mason about quantum 2.0, building a regional quantum ecosystem, and why she sees leadership as a way to serve and build community rather than accumulate power.Summary This conversation is for anyone curious about how quantum materials research, academic leadership, and large‑scale public investment are shaping the next phase of quantum technology. You’ll hear how Nadya’s path from AT&T Bell Labs to dean of the Pritzker School of Molecular Engineering at UChicago informs her service‑oriented approach to leadership and ecosystem building. The discussion spans superconducting devices, Chicago’s quantum hub strategy, and what it will actually take to build a diverse, job‑ready quantum workforce in time for the coming wave of applications.What You’ll LearnHow a non‑linear path (elite sports, catching up in math, early lab work) can lead to a career at the center of quantum science and engineering.Why condensed matter and quantum materials are the quiet “bottleneck” for scalable quantum computing, networking, and transduction technologies.How superconducting junctions, Andreev bound states, and hybrid devices underpin today’s superconducting qubits and topological quantum efforts.The difference between “quantum 1.0” (lasers, GPS, nuclear power, semiconductors) and “quantum 2.0” focused on sensing, communication, and computation.How the Pritzker School of Molecular Engineering and the Chicago Quantum Exchange are deliberately knitting together universities, national labs, industry, and state funding into a cohesive quantum cluster.Why Nadya frames leadership as building communities around science and opportunity, and what that means in a faculty‑driven environment where “nobody works for the dean.”Concrete ways Illinois and UChicago are approaching quantum education and workforce development, from REUs and the Open Quantum Initiative to the South Side Science Fair.Why early math confidence plus hands‑on research experience are the two most important ingredients for preparing the next generation of quantum problem‑solvers.Resources & Links Pritzker School of Molecular Engineering, University of Chicago – Nadya’s home institution, pioneering an interdisciplinary, theme‑based approach to quantum, materials for sustainability, and immunoengineering.Chicago Quantum Exchange – Regional hub connecting universities, national labs, and industry to build quantum networks, workforce, and commercialization pathways.South Side Science Fair (UChicago) – Large‑scale outreach effort bringing thousands of local students to campus to encounter science and quantum concepts early.Key Quotes or Insights “A rainbow is more beautiful because I understand the fraction behind it”—how physics deepened Nadya’s sense of wonder rather than reducing it.“In condensed matter, the devil is in the material—and the interfaces”—why microscopic imperfections and humidity‑induced “schmutz” can make or break quantum devices.“Quantum 1.0 gave us lasers, GPS, and nuclear power; quantum 2.0 is about using quantum systems to *process* information through sensing, networking, and computing.”“If you want to accumulate power, academia is not the place—faculty don’t work for me. Leadership here is about building community and creating opportunities.”“If we want to lead in quantum as a country, we have to make math skills and real lab experiences accessible early, so kids even know this world exists as an option.”Calls to Action Subscribe to The New Quantum Era and share this episode with a colleague or student who’s curious about quantum careers and leadership beyond the usual narratives.If you’re an educator or program lead, explore ways to bring hands‑on research experiences and accessible math support into your classroom or community programs.If you’re in industry, academia, or policy, consider how you or your organization can plug into regional quantum ecosystems like Chicago’s to support training, internships, and inclusive hiring.

Jan 26, 2026 • 33min
Democratizing Quantum Venture Investing with Chris Sklarin
Your host, Sebastian Hassinger, talks with Alumni Ventures managing partner Chris Sklarin about how one of the most active US venture firms is building a quantum portfolio while “democratizing” access to VC as an asset class for individual investors. They dig into Alumni Ventures’ co‑investor model, how the firm thinks about quantum hardware, software, and sensing, and why quantum should be viewed as a long‑term platform with near‑term pockets of commercial value. Chris also explains how accredited investors can start seeing quantum deal flow through Alumni Ventures’ syndicate.Chris’ background and Alumni Ventures in a nutshellChris is an MIT‑trained engineer who spent years in software startups before moving into venture more than 20 years ago.Alumni Ventures is a roughly decade‑old firm focused on “democratizing venture capital” for individual investors, with over 11,000 LPs, more than 1.5 billion dollars raised, and about 1,300 active portfolio companies.The firm has been repeatedly recognized as a highly active VC by CB Insights, PitchBook, Stanford GSB, and Time magazine.How Alumni Ventures structures access for individualsMost investors come in as individuals into LLC‑structured funds rather than traditional GP/LP funds.Alumni Ventures always co‑invests alongside a lead VC, using the lead’s conviction, sector expertise, and diligence as a key signal.The platform also offers a syndicate where accredited investors can opt in to see and back individual deals, including those tagged for quantum.Quantum in the Alumni Ventures portfolioAlumni Ventures has 5–6 quantum‑related investments spanning hardware, software, and applications, including Rigetti, Atom Computing, Q‑CTRL, Classiq, and quantum‑error‑mitigation startup Qedma/Cadmus.Rigetti was one of the firm’s earliest quantum investments; the team followed on across multiple rounds and was able to return capital to investors after Rigetti’s SPAC and a strong period in the public markets.Chris also highlights interest in Cycle Dre (a new company from Rigetti’s former CTO) and application‑layer companies like InQ and quantum sensing players.Barbell funding and the “3–5 year” viewChris responds to the now‑familiar “barbell” funding picture in quantum— a few heavily funded players and a long tail of small companies—by emphasizing near‑term revenue over pure science experiments.He sees quantum entering an era where companies must show real products, customers, and revenue, not just qubit counts.Over the next 3–5 years, he expects meaningful commercial traction first in areas like quantum sensing, navigation, and point solutions in chemistry and materials, with full‑blown fault‑tolerant systems further out.Hybrid compute and NVIDIA’s signal to the marketChris points to Jensen Huang’s GTC 2025 keynote slide on NVIDIA’s hybrid quantum–GPU ecosystem, where Alumni Ventures portfolio companies such as Atom Computing, Classiq, and Rigetti appeared.He notes that NVIDIA will not put “science projects” on that slide—those partnerships reflect a view that quantum processors will sit tightly coupled next to GPUs to handle specific workloads.He also mentions a large commercial deal between NVIDIA and Groq (a classical AI chip company in his portfolio) as another sign of a more heterogeneous compute future that quantum will plug into.Where near‑term quantum revenue shows upChris expects early commercial wins in sensing, GPS‑denied navigation, and other narrow but valuable applications before broad “quantum advantage” in general‑purpose computing.Software and middleware players can generate revenue sooner by making today’s hardware more stable, more efficient, or easier to program, and by integrating into classical and AI workflows.He stresses that investors love clear revenue paths that fit into the 10‑year life of a typical venture fund.University spin‑outs, clustering, and deal flowAlumni Ventures certainly sees clustering around strong quantum schools like MIT, Harvard, and Yale, but Chris emphasizes that the “alumni angle” is secondary to the quality of the venture deal.Mature tech‑transfer offices and standard Delaware C‑corps mean spinning out quantum IP from universities is now a well‑trodden path.Chris leans heavily on network effects—Alumni Ventures’ 800,000‑person network and 1,300‑company CEO base—as a key channel for discovering the most interesting quantum startups.Managing risk in a 100‑hardware‑company worldWith dozens of hardware approaches now in play, Chris uses Alumni Ventures’ co‑investor model and lead‑investor diligence as a filter rather than picking purely on physics bets.He looks for teams with credible near‑term commercial pathways and for mechanisms like sensing or middleware that can create value even if fault‑tolerant systems arrive later than hoped.He compares quantum to past enabling waves like nanotech, where the biggest impact often shows up as incremental improvements rather than a single “big bang” moment.Democratizing access to quantum ventureAlumni Ventures allows accredited investors to join its free syndicate, self‑attest accreditation, and then see deal materials—watermarked and under NDA—for individual investments, including quantum.Chris encourages people to think in terms of diversified funds (20–30 deals per fund year) rather than only picking single names in what is a power‑law asset class.He frames quantum as a long‑duration infrastructure play with near‑term pockets of usefulness, where venture can help investors participate in the upside without getting ahead of reality.

Jan 19, 2026 • 32min
Regional quantum development with Alejandra Y. Castillo
Alejandra Y. Castillo, former Assistant Secretary of Commerce for Economic Development and now Chancellor Senior Fellow for Economic Development at Purdue University Northwest, joins your host, Sebastian Hassinger, to discuss how quantum technologies can drive inclusive regional economic growth and workforce development. She shares lessons from federal policy, Midwest tech hubs, and cross-state coalitions working to turn quantum from lab research into broad-based opportunity.Themes and key insightsQuantum as near-term and multi-faceted: Castillo pushes back on the idea that quantum is distant, emphasizing that computing, sensing, and communications are already maturing and attracting serious investment from traditional industries like biopharma.From federal de-risking to regional ecosystems: She describes the federal role as de-risking early innovation through programs under the CHIPS and Science Act while stressing that long-term success depends on regional coalitions across states, universities, industry, philanthropy, and local government.Inclusive workforce and supply-chain planning: Castillo argues that “quantum workforce” must go beyond PhDs to include a mapped ecosystem of jobs, skills, suppliers, housing, and infrastructure so that local communities see quantum as opportunity, not displacement.National security, urgency, and inclusion: She frames sustained quantum investment as both an economic and national security imperative, warning that inconsistent U.S. funding risks falling behind foreign competitors while also noting that private capital alone may ignore inclusion and regional equity.Notable quotes“We either focus on the urgency or we’re going to have to focus on the emergency.”“No one state is going to do this… This is a regional play that we will be called to answer for the sake of a national security play as well.”“We want to make sure that entire regions can actually reposition themselves from an economic perspective, so that people can stay in the places they call home—now we’re talking about quantum.”“Are we going to make that same mistake again, or should we start to think about and plan how quantum is going to also impact us?”Articles, papers, and initiatives mentionedAmerica's quantum future depends on regional ecosystems like Chicago's — Alejandra’s editorial in Crain’s Chicago Business calling for sustained, coordinated investment in quantum as a national security and economic priority, highlighting the role of the Midwest and tech hubs.CHIPS and Science Act (formerly “Endless Frontier”) — U.S. legislation that authorized large-scale funding for semiconductors and science, enabling EDA’s Tech Hubs and NSF’s Engines programs to back regional coalitions in emerging technologies like quantum.EDA Tech Hubs and NSF Engines programs — Federal initiatives that fund multi-state consortiums combining universities, companies, and civic organizations to build durable regional innovation ecosystems, including quantum-focused hubs in the Midwest.National Quantum Algorithms Center — This center explores quantum algorithms for real-world problems such as natural disasters and biopharma discovery, aiming to connect quantum advances directly to societal challenges.Roberts Impact Lab at Purdue Northwest (with Quantum Corridor) – A testbed and workforce development center focused on quantum, AI, and post-quantum cryptography, designed to prepare local talent and companies for quantum-era applications.Chicago Quantum Exchange and regional partners (Illinois, Indiana, Wisconsin) – A multi-university and multi-state collaboration that pioneered a model for regional quantum ecosystems.

10 snips
Jan 12, 2026 • 1h 3min
Majorana qubits with Chetan Nayak
Chetan Nayak, a Technical Fellow at Microsoft and a professor at UCSB, dives into the fascinating world of Majorana qubits. He shares his journey from hearing Peter Shor's lectures to creating Microsoft's topological quantum hardware. Chetan explains how non-Abelian anyons enable error-resistant quantum computation and discusses the intricate design of nanowires. The conversation also highlights innovative architectures like tetris and the practical challenges in combining semiconductors and superconductors for scaling quantum technologies.

Dec 12, 2025 • 30min
Peaked quantum circuits with Hrant Gharibyan
In this episode of The New Quantum Era, Sebastian talks with Hrant Gharibyan, CEO and co‑founder of BlueQubit, about “peaked circuits” and the challenge of verifying quantum advantage. They unpack Scott Aaronson and Yuxuan Zhang’s original peaked‑circuit proposal, BlueQubit’s scalable implementation on real hardware, and a new public challenge that invites the community to attack their construction using the best classical algorithms available. Along the way, they explore how this line of work connects to cryptography, hardness assumptions, and the near‑term role of quantum devices as powerful scientific instruments.Topics CoveredWhy verifying quantum advantage is hard The core problem: if a quantum device claims to solve a task that is classi-cally intractable, how can anyone check that it did the right thing? Random circuit sampling (as in Google’s 2019 “supremacy” experiment and follow‑on work from Google and Quantinuum) is believed to be classically hard to simulate, but the verification metrics (like cross‑entropy benchmarking) are themselves classically intractable at scale.What are peaked circuits? Aaronson and Zhang’s idea: construct circuits that look like random circuits in every respect, but whose output distribution secretly has one special bit string with an anomalously high probability (the “peak”). The designer knows the secret bit string, so a quantum device can be verified by checking that measurement statistics visibly reveal the peak in a modest number of shots, while finding that same peak classically should be as hard as simulating a random circuit.BlueQubit’s scalable construction and hardware demo BlueQubit extended the original 24‑qubit, simulator‑based peaked‑circuit construction to much larger sizes using new classical protocols. Hrant explains their protocol for building peaked circuits on Quantinuum’s H2 processor with around 56 qubits, thousands of gates, and effectively all‑to‑all connectivity, while still hiding a single secret bit string that appears as a clear peak when run on the device.Obfuscation tricks and “quantum steganography” The team uses multiple obfuscation layers (including “swap” and “sweeping” tricks) to transform simple peaked circuits into ones that are statistically indistinguishable from generic random circuits, yet still preserve the hidden peak.The BlueQubit Quantum Advantage Challenge To stress‑test their hardness assumptions, BlueQubit has published concrete circuits and launched a public bounty (currently a quarter of a bitcoin) for anyone who can recover the secret bit string classically. The aim is to catalyze work on better classical simulation and de‑quantization techniques; either someone closes the gap (forcing the protocol to evolve) or the standing bounty helps establish public trust that the task really is classically infeasible.Potential cryptographic angles Although the main focus is verification of quantum advantage, Hrant outlines how the construction has a cryptographic flavor: a secret bit string effectively acts as a key, and only a sufficiently powerful quantum device can efficiently “decrypt” it by revealing the peak. Variants of the protocol could, in principle, yield schemes that are classically secure but only decryptable by quantum hardware, and even quantum‑plus‑key secure, though this remains speculative and secondary to the verification use case. From verification protocol to startup roadmap Hrant positions BlueQubit as an algorithm and capability company: deeply hardware‑aware, but focused on building and analyzing advantage‑style algorithms tailored to specific devices. The peaked‑circuit work is one pillar in a broader effort that includes near‑term scientific applications in condensed‑matter physics and materials (e.g., Fermi–Hubbard models and out‑of‑time‑ordered correlators) where quantum devices can already probe regimes beyond leading classical methods.Scientific advantage today, commercial advantage tomorrow Sebastian and Hrant emphasize that the first durable quantum advantages are likely to appear in scientific computing—acting as exotic lab instruments for physicists, chemists, and materials scientists—well before mass‑market “killer apps” arrive. Once robust, verifiable scientific advantage is established, scaling to larger models and more complex systems becomes a question of engineering, with clear lines of sight to industrial impact in sectors like pharmaceuticals, advanced materials, and manufacturing.The challenge: https://app.bluequbit.io/hackathons/

Dec 6, 2025 • 37min
Diamond vacancies and scalable qubits with Quantum Brilliance
Episode overviewThis episode of The New Quantum Era features a conversation with Quantum Brilliance co‑founder and CEO Mark Luo and independent board chair Brian Wong about diamond nitrogen vacancy (NV) centers as a platform for both quantum computing and quantum sensing. The discussion covers how NV centers work, what makes diamond‑based qubits attractive at room temperature, and how to turn a lab technology into a scalable product and business.What are diamond NV qubits? Mark explains how nitrogen vacancy centers in synthetic diamond act as stable room‑temperature qubits, with a nitrogen atom adjacent to a missing carbon atom creating a spin system that can be initialized and read out optically or electronically. The rigidity and thermal properties of diamond remove the need for cryogenics, complex laser setups, and vacuum systems, enabling compact, low‑power quantum devices that can be deployed in standard environments.Quantum sensing to quantum computing NV centers are already enabling ultra‑sensitive sensing, from nanoscale MRI and quantum microscopy to magnetometry for GPS‑free navigation and neurotech applications using diamond chips under growing brain cells. Mark and Brian frame sensing not as a hedge but as a volume driver that builds the diamond supply chain, pushes costs down, and lays the manufacturing groundwork for future quantum computing chips.Fabrication, scalability, and the value chain A key theme is the shift from early “shotgun” vacancy placement in diamond to a semiconductor‑style, wafer‑like process with high‑purity material, lithography, characterization, and yield engineering. Brian characterizes Quantum Brilliance’s strategy as “lab to fab”: deciding where to sit in the value chain, leveraging the existing semiconductor ecosystem, and building a partner network rather than owning everything from chips to compilers.Devices, roadmaps, and hybrid nodes Quantum Brilliance has deployed room‑temperature systems with a handful of physical qubits at Oak Ridge National Laboratory, Fraunhofer IAF, and the Pawsey Supercomputing Centre. Their roadmap targets application‑specific quantum computing with useful qubit counts toward the end of this decade, and lunchbox‑scale, fault‑tolerant systems with on the order of 50–60 logical qubits in the mid‑2030s.Modality tradeoffs and business discipline Mark positions diamond NV qubits as mid‑range in both speed and coherence time compared with superconducting and trapped‑ion systems, with their differentiator being compute density, energy efficiency, and ease of deployment rather than raw gate speed. Brian brings four decades of experience in semiconductors, batteries, lidar, and optical networking to emphasize milestones, early revenue from sensing, and usability—arguing that making quantum devices easy to integrate and operate is as important as the underlying physics for attracting partners, customers, and investors.Partners and ecosystem The episode underscores how collaborations with institutions such as Oak Ridge, Fraunhofer, and Pawsey, along with industrial and defense partners, help refine real‑world requirements and ensure the technology solves concrete problems rather than just hitting abstract benchmarks. By co‑designing with end users and complementary hardware and software vendors, Quantum Brilliance aims to “democratize” access to quantum devices, moving them from specialized cryogenic labs to desks, edge systems, and embedded platforms.

Nov 26, 2025 • 49min
Macroscopic Quantum Tunneling with Nobel Laureate John Martinis
John Martinis, a Nobel laureate and pioneer in superconducting quantum circuits, joins the discussion to unravel the fascinating world of macroscopic quantum tunneling. He delves into the evolution of synthetic atoms and the importance of Josephson junctions in quantum technology. Martinis emphasizes the critical role of fabrication and error correction in scaling quantum systems. He also reflects on the transition from basic qubit physics to engineering challenges, and the collaborative spirit that initially defined the field before commercialization changed the landscape.

Nov 18, 2025 • 36min
Trapped ions on the cloud with Thomas Monz from AQT
Thomas Monz, CEO and co-founder of Alpine Quantum Technologies and a physicist in trapped-ion research, shares his journey from academia to entrepreneurship. He discusses the evolution of ion-trap quantum computing, highlighting AQT’s shift from component supplier to integrated systems. Thomas reveals insights on implementing error correction, designing hardware for high-performance computing, and the implications of launching on Amazon Braket. He emphasizes the importance of cloud access for broader use and how it drives commercial feedback and the adoption of error-correction strategies.

Nov 12, 2025 • 34min
Quantum Materials and Nano Fabrication with Javad Shabani
Quantum Materials and Nano-Fabrication with Javad ShabaniGuest: Dr. Javad Shabani is Professor of Physics at NYU, where he directs both the Center for Quantum Information Physics and the NYU Quantum Institute. He received his PhD from Princeton University in 2011, followed by postdoctoral research at Harvard and UC Santa Barbara in collaboration with Microsoft Research. His research focuses on novel states of matter at superconductor-semiconductor interfaces, mesoscopic physics in low-dimensional systems, and quantum device development. He is an expert in molecular beam epitaxy growth of hybrid quantum materials and has made pioneering contributions to understanding fractional quantum Hall states and topological superconductivity.Episode OverviewProfessor Javad Shabani shares his journey from electrical engineering to the frontiers of quantum materials research, discussing his pioneering work on semiconductor-superconductor hybrid systems, topological qubits, and the development of scalable quantum device fabrication techniques. The conversation explores his current work at NYU, including breakthrough research on germanium-based Josephson junctions and the launch of the NYU Quantum Institute.Key Topics DiscussedEarly Career and Quantum JourneyJavad describes his unconventional path into quantum physics, beginning with a double major in electrical engineering and physics at Sharif University of Technology after discovering John Preskill's open quantum information textbook. His graduate work at Princeton focused on the quantum Hall effect, particularly investigating the enigmatic five-halves fractional quantum Hall state and its potential connection to non-abelian anyons.From Spin Qubits to Topological Quantum ComputingDuring his PhD, Javad worked with Jason Petta and Mansur Shayegan on early spin qubit experiments, experiencing firsthand the challenge of controlling single quantum dots. His postdoctoral work at Harvard with Charlie Marcus focused on scaling from one to two qubits, revealing the immense complexity of nanofabrication and materials science required for quantum control. This experience led him to topological superconductivity at UC Santa Barbara, where he collaborated with Microsoft Research on semiconductor-superconductor heterostructures.Planar Josephson Junctions and Material InnovationAt NYU, Javad's group developed planar two-dimensional Josephson junctions using indium arsenide semiconductors with aluminum superconductors, moving away from one-dimensional nanowires toward more scalable fabrication approaches. In 2018-2019, his team published groundbreaking results in Physical Review Letters showing signatures of topological phase transitions in these hybrid systems.Gatemon Qubits and Hybrid SystemsThe conversation explores Javad's recent work on gatemon qubits—gate-tunable superconducting transmon qubits that leverage semiconductor properties for fast switching in the nanosecond regime. While indium arsenide's piezoelectric properties may limit qubit coherence, the material shows promise as a fast coupler between qubits. This research, published in Physical Review X, represents a convergence of superconducting circuit techniques with semiconductor physics.Breakthrough in Germanium-Based DevicesJavad reveals exciting forthcoming research accepted in Nature Nanotechnology on creating vertical Josephson junctions entirely from germanium. By doping germanium with gallium to make it superconducting, then alternating with undoped semiconducting germanium, his team has achieved wafer-scale fabrication of three-layer superconductor-semiconductor-superconductor junctions. This approach enables placing potentially 20 million junctions on a single wafer, opening pathways toward CMOS-compatible quantum device manufacturing.NYU Quantum Institute and Regional EcosystemThe episode discusses the launch of the NYU Quantum Institute under Javad's leadership, designed to coordinate quantum research across physics, engineering, chemistry, mathematics, and computer science. The Institute aims to connect fundamental research with application-focused partners in finance, insurance, healthcare, and communications throughout New York City. Javad describes NYU's quantum networking project with five nodes across Manhattan and Brooklyn, leveraging NYU's distributed campus fiber infrastructure for short-distance quantum communication.Academic Collaboration and the New York Quantum EcosystemJavad explains how NYU collaborates with Columbia, Princeton, Yale, Cornell, RPI, Stevens Institute, and City College to build a Northeast quantum corridor. The annual New York Quantum Summit (now in its fourth year) brings together academics, government labs including AFRL and Brookhaven, consulting firms, and industry partners. This regional approach complements established hubs like the Chicago Quantum Exchange while addressing New York's unique strengths in finance and dense urban infrastructure.Materials Science Challenges and InterfacesThe conversation delves into fundamental materials science puzzles, particularly the asymmetric nature of material interfaces. Javad explains how material A may grow well on material B, but B cannot grow on A due to polar interface incompatibilities—a critical challenge for vertical device fabrication. He draws parallels to aluminum oxide Josephson junctions, where the bottom interface is crystalline but the top interface grows on amorphous oxide, potentially contributing to two-level system noise.Industry Integration and Practical ApplicationsJavad discusses NYU's connections to chip manufacturing through the CHIPS Act, linking academic research with 200-300mm wafer-scale operations at NY Creates. His group also participates in the Co-design Center for Quantum Advantage (C2QA) based at Brookhaven National Laboratory.Notable Quotes"Behind every great experimentalist, there is a greater theorist.""A lot of these kind of application things, the end users are basically in big cities, including New York...people who care at finance financial institutions, people like insurance, medical for sensing and communication.""You don't wanna spend time on doing the exact same thing...but I do feel we need to be more and bigger."

Oct 31, 2025 • 40min
Incubating quantum innovation with Vijoy Pandey of Outshift by Cisco
Vijoy Pandey joins Sebastian Hassinger for this episode of The New Quantum Era to discuss Cisco's ambitious vision for quantum networking—not as a far-future technology, but as infrastructure that solves real problems today. Leading Outshift by Cisco, their incubation group and Cisco Research, Vijoy explains how quantum networks are closer than quantum computers, why distributed quantum computing is the path to scale, and how entanglement-based protocols can tackle immediate classical challenges in security, synchronization, and coordination. The conversation spans from Vijoy's origin story building a Hindi chatbot in the late 1980s to Cisco's groundbreaking room-temperature quantum entanglement chip developed with UC Santa Barbara, and explores use cases from high-frequency trading to telescope array synchronization.Guest BioVijoy Pandey is Senior Vice President at Outshift by Cisco, the company's internal incubation group, where he also leads Cisco Research and Cisco Developer Relations (DevNet). His career in computing began in high school building AI chatbots, eventually leading him through distributed systems and software engineering roles including time at Google. At Cisco, Vijoy oversees a portfolio spanning quantum networking, security, observability, and emerging technologies, operating at the intersection of research and product incubation within the company's Chief Strategy Office.Key TopicsFrom research to systems: How Cisco's quantum work is transitioning from physics research to systems engineering, focusing on operability, deployment, and practical applications rather than building quantum computers.The distributed quantum computing vision: Cisco's North Star is building quantum network fabric that enables scale-out distributed quantum computing across heterogeneous QPU technologies (trapped ion, superconducting, etc.) within data centers and between them—making "the quantum network the solution" to quantum's scaling problem and classical computing's physics problem.Room-temperature entanglement chip: Cisco and UC Santa Barbara developed a prototype photonic chip that generates 200 million entangled photon pairs per second at room temperature, telecom wavelengths, and less than 1 milliwatt power—enabling deployment on existing fiber infrastructure without specialized equipment.Classical use cases today: How quantum networking protocols solve present-day problems in synchronization (global database clocks, telescope arrays), decision coordination (high-frequency trading across geographically distributed exchanges), and security (intrusion detection using entanglement collapse) without requiring massive qubit counts or cryogenic systems.Quantum telepathy for HFT: The concept of using entanglement and teleportation to coordinate decisions across locations faster than the speed of light allows classical communication—enabling fairness guarantees for high-frequency trading across data centers in different cities.Meeting customers where they are: Cisco's strategy to deploy quantum networking capabilities alongside existing classical infrastructure, supporting a spectrum from standard TLS to post-quantum cryptography to QKD, rather than requiring greenfield deployments.The transduction grand challenge: Why building the "NIC card" that connects quantum processors to quantum networks—the transducer—is the critical bottleneck for distributed quantum computing and the key technical risk Cisco is addressing.Product-company fit in corporate innovation: How Outshift operates like internal startups within Cisco, focusing on problems adjacent to the company's four pillars (networking, security, observability, collaboration) with both technology risk and market risk, while maintaining agility through a framework adapted from Cisco's acquisition integration playbook.Why It MattersCisco's systems-level approach to quantum networking represents a paradigm shift from viewing quantum as distant future technology to infrastructure deployable today for specific high-value use cases. By focusing on room-temperature, telecom-compatible entanglement sources and software stacks that integrate with existing networks, Cisco is positioning quantum networking as the bridge between classical and quantum computing worlds—potentially accelerating practical quantum applications from decades away to 5-10 years while solving immediate enterprise challenges in security and coordination.Episode HighlightsVijoy's journey from building Hindi chatbots on a BBC Micro in the late 1980s to leading quantum innovation at Cisco. Why quantum networking is "here and now" while quantum computing is still being figured out. The spectrum of quantum network applications: from near-term classical coordination problems to the long-term quantum internet connecting quantum data centers and sensors. How entanglement enables provable intrusion detection on standard fiber networks alongside classical IP traffic. The "step function moment" coming for quantum: why the transition from physics to systems engineering means a ChatGPT-like breakthrough is imminent, and why this one will be harder to catch up on than software-based revolutions. Design partner collaborations with financial services, federal agencies, and energy companies on security and synchronization use cases.Cisco's quantum software stack prototypes: Quantum Compiler (for distributed quantum error correction), Quantum Alert (security), and QuantumSync (decision coordination)."


