DataTalks.Club cover image

DataTalks.Club

Latest episodes

undefined
Jul 22, 2022 • 53min

Hiring Data Science Talent - Olga Ivina

We talked about: Olga’s career journey Hiring data scientists now vs 7 years ago The two qualities of an excellent data scientist What makes Alexey do this podcast How Alexey get the latest information on data science How Olga checks a candidate’s technical skills How to make an answer stand out (showing your depth of knowledge) A strong mathematical background vs a strong engineering background When Auto ML will replace the need to have data scientists Should data scientists transition into management? (the importance of communication in an organization) Switching from a data analyst role to a data scientist Attracting female talent in data science Changing a job description to find talent Long gaps in the CV Eierlegende Wollmilchsau Links: Olga's LinkedIn: https://www.linkedin.com/in/olgaivina/  Olga's Twitter: https://twitter.com/olgaivina MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
Jul 15, 2022 • 50min

From Open-Source Maintainer to Founder - Will McGugan

We talked about:  Will’s background Will’s open source projects S3Fs and PyFile systems Inspiration for open source projects Will as a freelancer Starting a company from a tweet (Rich and Textual) Building in public (Will’s approach to social media) The workforce and roadmap of Textualize.io The importance of working on open source for Textualize employees The workflow of and contributions to Textualize Getting your first thousand GitHub Stars (going viral) Suggestions for those who wish to start in the open-source space Finding Will online Links:  Twitter: https://twitter.com/willmcgugan Textualize website: https://www.textualize.io/ Textualize GitHub: https://github.com/textualize MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
Jul 8, 2022 • 51min

Designing a Data Science Organization - Lisa Cohen

We talked about: Lisa’s background Centralized org vs decentralized org Hybrid org (centralized/decentralized) Reporting your results in a data organization Planning in a data organization Having all the moving parts work towards the same goals Which approach Twitter follows (centralized vs decentralized) Pros and cons of a decentralized approach Pros and cons of a centralized approach Finding a common language with all the functions of an org Finding the right approach for companies that want to implement data science How many data scientists does a company need? Who do data scientists report huge findings to? The importance of partnering closely with other functions of the org The role of Product Managers in the org and across functions Who does analytics at Twitter (analysts vs data scientists) The importance of goals, objectives and key results Conflicting objectives The importance of research Finding Lisa online Links: LinkedIn: https://www.linkedin.com/in/cohenlisa/ Twitter: https://twitter.com/lisafeig Medium: https://medium.com/@lisa_cohen Lisa Cohen's YouTube videos: https://www.youtube.com/playlist?list=PLRhmnnfr2bX7-GAPHzvfUeIEt2iYCbI3w MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
Jul 1, 2022 • 51min

Developer Advocacy Engineer for Open-Source - Merve Noyan

We talked about: Merve’s background Merve’s first contributions to open source What Merve currently does at Hugging Face (Hub, Spaces) What is means to be a developer advocacy engineer at Hugging Face The best way to get open source experience (Google Summer of Code, Hacktoberfest, and sprints) The peculiarities of hiring as it relates to code contributions Best resources to learn about NLP besides Hugging Face Good first projects for NLP The most important topics in NLP right now NLP ML Engineer vs NLP Data Scientist Project recommendations and other advice to catch the eye of recruiters Merve on Twitch and her podcast Finding Merve online Merve and Mario Kart Links: Hugging Face Course: https://hf.co/course Natural Language Processing in TensorFlow: https://www.coursera.org/learn/natural-language-processing-tensorflow Github ML Poetry: https://github.com/merveenoyan/ML-poetry Tackling multiple tasks with a single visual language model: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model Hugging Face big science/TOpp: https://huggingface.co/bigscience/T0pp Pathways Language Model (PaLM) blog: https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
Jun 24, 2022 • 58min

Data Scientists at Work - Mısra Turp

We talked about: Misra’s background What data scientists do Consultant data scientists vs in-house data scientists (and freelancers) Expectations for data scientists The importance of keeping up to date with AI developments (FOMA) How does DALL·E 2 work and should you care? Going to conferences to stay up to date The most pressing issue for data scientists Fighting FOMA and imposter syndrome Knowing when you have enough knowledge of a framework The “best” type of data scientist Being a generalist vs a specialist Advice for entry-level data entering an oversaturated market Catching the eye of big AI companies Choosing a project for your portfolio The importance of having a Ph.D. or Master’s degree in data science Finding Misra online Links: Mısra's YouTube channel: https://www.youtube.com/channel/UCpNUYWW0kiqyh0j5Qy3aU7w Twitter: https://twitter.com/misraturp Hands-on Data Science: Complete Your First Portfolio Project: https://www.soyouwanttobeadatascientist.com/hods  MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.htm
undefined
Jun 17, 2022 • 52min

Freelancing and Consulting with Data Engineering - Adrian Brudaru

We talked about: Adrian’s background Freelancing vs Employment Risk and occupancy rate in freelancing The scariest part of freelancing Adrian’s first projects Freelancing 5 years later Pay rates in freelancing Acquiring skills while freelancing Working with recruitment agencies and networking Looking for projects and getting clients Freelancing vs consulting Clarity in clients’ expectations (scope of work) Building your network Freelancing platforms Adrian’s data loading prototype Going from freelancing to making your own product (and other investments) The usefulness of a portfolio Introverts in freelancing Is it possible to work for 3 months a year in freelancing? Choosing projects and skill-building strategy (focusing on interests) Freelancing in Berlin Clients’ expectations for freelancers vs employees Working with more than one client at the same time Adrian’s freelance cooperative on Slack Other advice for novice freelancers (networking) Finding Adrian online Links: Github: https://github.com/scale-vector Slack Community: https://join.slack.com/t/berlindatacol-szn7050/shared_invite/zt-19dp8msp0-pP4Av3_fVFBbsdrzPROEAg MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
Jun 10, 2022 • 48min

Getting a Data Engineering Job (Summary and Q&A) - Jeff Katz

We talked about: Summary of “Getting a Data Engineering Job” webinar Python and engineering skills  Interview process Behavioral interviews Technical interviews Learning Python and SQL from scratch Is having non-coding experience a disadvantage? Analyst or engineer? Do you need certificates? Do I need a master’s degree? Fully remote data engineering jobs Should I include teaching on my resume? Object-oriented programming for data engineering Python vs Java/Scala SQL and Python technical interview questions GCP certificates Is commercial experience really necessary? From sales to engineering Solution engineers Wrapping up Links: Getting a Data Engineering Job (webinar): https://www.youtube.com/watch?v=yvEWG-S1F_M The Flask Mega-Tutorial Part I - Hello, World! blog: https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world Mode SQL Tutorial: https://mode.com/sql-tutorial/ MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
Jun 3, 2022 • 53min

Using Data for Asteroid Mining - Daynan Crull

We talked about: Daynan’s background Astronomy vs cosmology Applications of data science and machine learning in astronomy Determining signal vs noise What the data looks like in astronomy Determining the features of an object in space Ground truth for space objects Why water is an important resource in the space economy Other useful resources that can be found in asteroids Sources of asteroids The data team at an asteroid mining company Open datasets for hobbyists Mission and hardware design for asteroid mining Partnerships and hires Links:  LinkedIn: https://www.linkedin.com/in/daynan/ We're looking for a Sr Data Engineer: https://boards.eu.greenhouse.io/karmanplus/jobs/4027128101?gh_jid=4027128101 Minor Planet Center: https://minorplanetcenter.net/- JPL Horizons has a nice set of APIs for accessing data related to small bodies (including asteroids): https://ssd.jpl.nasa.gov/api.html ESA has NEODyS: https://newton.spacedys.com/neodys   IRSA catalog that contains image and catalog data related to the WISE/NEOWISE data (and other infrared platforms): https://irsa.ipac.caltech.edu/frontpage/ NASA also has an archive of data collected from their various missions, including a node related to small bodies: https://pds-smallbodies.astro.umd.edu/ Sub-node directly related to asteroids: https://sbn.psi.edu/pds/ Size, Mass, and Density of Asteroids (SiMDA) is a nice catalog of observed asteroid attributes (and an indication of how small our sample size is!): https://astro.kretlow.de/?SiMDA The source survey data, several are useful for asteroids: Pan-STARRS (https://outerspace.stsci.edu/display/PANSTARRS) MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
May 27, 2022 • 53min

Machine Learning in Marketing - Juan Orduz

We talked about: Juan’s background Typical problems in marketing that are solved with ML Attribution model Media Mix Model – detecting uplift and channel saturation Changes to privacy regulations and its effect on user tracking User retention and churn prevention A/B testing to detect uplift Statistical approach vs machine learning (setting a benchmark) Does retraining MMM models often improve efficiency? Attribution model baselines Choosing a decay rate for channels (Bayesian linear regression) Learning resource suggestions Bayesian approach vs Frequentist approach Suggestions for creating a marketing department Most challenging problems in marketing The importance of knowing marketing domain knowledge for data scientists Juan’s blog and other learning resources Finding Juan online Links:  Juan's PyData talk on uplift modeling: https://youtube.com/watch?v=VWjsi-5yc3w Juan's website: https://juanitorduz.github.io Introduction to Algorithmic Marketing book: https://algorithmic-marketing.online Preventing churn like a bandit: https://www.youtube.com/watch?v=n1uqeBNUlRM MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html
undefined
May 20, 2022 • 49min

From Academia to Data Analytics and Engineering - Gloria Quiceno

We talked about:  Gloria’s background Working with MATLAB, R, C, Python, and SQL Working at ICE Job hunting after the bootcamp Data engineering vs Data science Using Docker Keeping track of job applications, employers and questions Challenges during the job search and transition Concerns over data privacy Challenges with salary negotiation The importance of career coaching and support Skills learned at Spiced Retrospective on Gloria’s transition to data and advice Top skills that helped Gloria get the job Thoughts on cloud platforms Thoughts on bootcamps and courses Spiced graduation project Standing out in a sea of applicants The cohorts at Spiced Conclusion Links: LinkedIn: https://www.linkedin.com/in/gloria-quiceno/ Github: https://github.com/gdq12 MLOps Zoomcamp: https://github.com/DataTalksClub/mlops-zoomcamp Join DataTalks.Club: https://datatalks.club/slack.html Our events: https://datatalks.club/events.html

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app