The Gradient: Perspectives on AI cover image

The Gradient: Perspectives on AI

Latest episodes

undefined
May 12, 2022 • 52min

David Chalmers on AI and Consciousness

In episode 25 of The Gradient Podcast, Daniel Bashir speaks to David Chalmers, professor of philosophy and Philosophy and Neural Science at New York University, and co-director of NYU’s center for Mind, Brain, and Consciousness. Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on TwitterSections:(00:00) Intro(00:42) “Today’s neural networks may be slightly conscious”(03:55) Openness to Machine Consciousness(09:37) Integrated Information Theory(18:41) Epistemic Gaps, Verbal Reports(25:52) Vision Models and Consciousness(33:37) Reasoning about Consciousness(38:20) Illusionism(41:30) Best Approaches to the Hard Problem(44:21) Panpsychism(46:35) OutroEpisode Links:* Chalmers’ Homepage* Facing Up to the Hard Problem of Consciousness (1995)* Reality+: Virtual Worlds and the Problems of Philosophy* Amanda Askell on AI Consciousness Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Apr 28, 2022 • 1h 6min

Greg Yang on Communicating Research, Tensor Programs, and µTransfer

In episode 24 of The Gradient Podcast, Daniel Bashir talks to Greg Yang, senior researcher at Microsoft Research. Greg Yang’s Tensor Programs framework recently received attention for its role in the µTransfer paradigm for tuning the hyperparameters of large neural networks. Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on TwitterSections:(00:00) Intro(01:50) Start in AI / Research(05:55) Fear of Math in ML(08:00) Presentation of Research(17:35) Path to MSR(21:20) Origin of Tensor Programs(26:05) Refining TP’s Presentation(39:55) The Sea of Garbage (Initializations) and the Oasis(47:44) Scaling Up Further(55:53) On Theory and Practice in Deep Learning(01:05:28) OutroEpisode Links:* Greg’s Homepage* Greg’s Twitter* µP GitHub* Visual Intro to Gaussian Processes (Distill) Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Mar 24, 2022 • 1h 3min

Nick Walton on AI Dungeon and the Future of AI in Games

In the 23rd interview of The Gradient Podcast, we talk to Nick Walton, the CEO and Co-Founder of Latitude, the goal of which is to make AI a tool of freedom and creativity for everyone, and which is currently developing AI Dungeon and Voyage. Subscribe to The Gradient Podcast:  * Apple Podcasts* Spotify * Pocket Casts * RSSOutline:(00:00) Intro(01:38) How did you go into AI / research(3:50) Origin of AI Dungeon(8:15) What is a Dungeon Master(12:!5) Brief history of AI Dungeon(17:30) AI in videogames, past and future(23:35) Early days of AI Dungeon(29:45) AI Dungeon as a Creative Tool(33:50) Technical Aspects of AI Dungeon(39:15) Voyage(48:27) Visuals in AI Dungeon(50:45) How to Control AI in Games(55:38) Future of AI in Games(57:50) Funny stories(59:45) Interests / Hobbies(01:01:45) Outro Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Feb 3, 2022 • 0sec

Connor Leahy on EleutherAI, Replicating GPT-2/GPT-3, AI Risk and Alignment

In episode 22 of The Gradient Podcast, we talk to Connor Leahy, an AI researcher focused on AI alignment and a co-founder of EleutherAI.Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on TwitterConnor is an AI researcher working on understanding large ML models and aligning them to human values, and a cofounder of EleutherAI, a decentralized grassroots collective of volunteer researchers, engineers, and developers focused on AI alignment, scaling, and open source AI research. The organization's flagship project is the GPT-Neo family of models designed to match those developed by OpenAI as GPT-3.Sections:(00:00:00) Intro(00:01:20) Start in AI(00:08:00) Being excited about GPT-2 (00:18:00) Discovering AI safety and alignment(00:21:10) Replicating GPT-2 (00:27:30) Deciding whether to relese GPT-2 weights(00:36:15) Life after GPT-2 (00:40:05) GPT-3 and Start of Eleuther AI(00:44:40) Early days of Eleuther AI(00:47:30) Creating the Pile, GPT-Neo, Hacker Culture(00:55:10) Growth of Eleuther AI, Cultivating Community(01:02:22) Why release a large language model(01:08:50) AI Risk and Alignment(01:21:30) Worrying (or not) about Superhuman AI(01:25:20) AI alignment and releasing powerful models(01:32:08) AI risk and research norms(01:37:10) Work on GPT-3 replication, GPT-NeoX(01:38:48) Joining Eleuther AI(01:43:28) Personal interests / hobbies(01:47:20) OutroLinks to things discussed:* Replicating GPT2–1.5B , GPT2, Counting Consciousness and the Curious Hacker* The Hacker Learns to Trust* The Pile* GPT-Neo* GPT-J* Why Release a Large Language Model?* What A Long, Strange Trip It's Been: EleutherAI One Year Retrospective* GPT-NeoX Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Jan 27, 2022 • 51min

Percy Liang on Machine Learning Robustness, Foundation Models, and Reproducibility

In interview 21 of The Gradient Podcast, we talk to Percy Liang, an Associate Professor of Computer Science at Stanford University and the director of the Center for Research on Foundation Models.Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on TwitterPercy Liang’s research spans many topics in machine learning and natural language processing, including robustness, interpretability, semantics, and reasoning.  He is also a strong proponent of reproducibility through the creation of CodaLab Worksheets.  His awards include the Presidential Early Career Award for Scientists and Engineers (2019), IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), a Microsoft Research Faculty Fellowship (2014), and multiple paper awards at ACL, EMNLP, ICML, and COLT.Sections:(00:00) Intro(01:21) Start in AI(06:52) Interest in Language(10:17) Start of PhD(12:22) Semantic Parsing(17:49) Focus on ML robustness(22:30) Foundation Models, model robustness(28:55) Foundation Model bias(34:48) Foundation Model research by academia(37:13) Current research interests(39:40) Surprising robustness results(44:24) Reproducibility and CodaLab(50:17) OutroPapers / Topics discussed:* On the Opportunities and Risks of Foundation Models* Reflections on Foundation Models* Removing spurious features can hurt accuracy and affect groups disproportionately.* Selective classification can magnify disparities across groups * Just train twice: improving group robustness without training group information * LILA: language-informed latent actions * CodaLab Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Jan 8, 2022 • 1h 33min

Eric Jang on Robots Learning at Google and Generalization via Language

In episode 20 of The Gradient Podcast, we talk to Eric Jang, a research scientist on the Robotics team at Google.Eric is a research scientist on the Robotics team at Google. His research focuses on answering whether big data and small algorithms can yield unprecedented capabilities in the domain of robotics, just like the computer vision, translation, and speech revolutions before it. Specifically, he focuses on robotic manipulation and self-supervised robotic learning.Sections:(00:00) Intro(00:50) Start in AI / Research(03:58) Joining Google Robotics(10:08) End to End Learning of Semantic Grasping(19:11) Off Policy RL for Robotic Grasping(29:33) Grasp2Vec(40:50) Watch, Try, Learn Meta-Learning from Demonstrations and Rewards(50:12) BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning(59:41) Just Ask for Generalization(01:09:02) Data for Robotics(01:22:10) To Understand Language is to Understand Generalization (01:32:38) OutroPapers discussed:* Grasp2Vec: Learning Object Representations from Self-Supervised Grasping* End-to-End Learning of Semantic Grasping* Deep reinforcement learning for vision-based robotic grasping: A simulated comparative evaluation of off-policy methods* Watch, Try, Learn Meta-Learning from Demonstrations and Rewards* BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning* Just Ask for Generalization* To Understand Language is to Understand Generalization* Robots Must Be Ephemeralized Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Dec 9, 2021 • 1h 34min

Rishi Bommasani on Foundation Models

In episode 19 of The Gradient Podcast, we talk to Rishi Bommasani, a Ph.D student at Stanford focused on Foundation Models. Rish is a second-year Ph.D. student in the CS Department at Stanford, where he is advised by Percy Liang and Dan Jurafsky. His research focuses on understanding AI systems and their social impact, as well as using NLP to further scientific inquiry. Over the past year, he helped build and organize the Stanford Center for Research on Foundation Models (CRFM).Sections:(00:00:00) Intro(00:01:05) How did you get into AI?(00:09:55) Towards Understanding Position Embeddings(00:14:23) Long-Distance Dependencies don’t have to be Long(00:18:55) Interpreting Pretrained Contextualized Representations via Reductions to Static Embeddings(00:30:25) Masters Thesis(00:34:05) Start of PhD and work on foundation models(00:42:14) Why were people intested in foundation models(00:46:45) Formation of CRFM(00:51:25) Writing report on foundation models(00:56:33) Challenges in writing report(01:05:45) Response to reception(01:15:35) Goals of CRFM(01:25:43) Current research focus(01:30:35) Interests outside of research(01:33:10) OutroPapers discussed:* Towards Understanding Position Embeddings* Long-Distance Dependencies don’t have to be Long: Simplifying through Provably (Approximately) Optimal Permutations* Interpreting Pretrained Contextualized Representations via Reductions to Static Embeddings* Generalized Optimal Linear Orders* On the Opportunities and Risks of Foundation Models* Reflections on Foundation Models Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Dec 3, 2021 • 1h 35min

Upol Ehsan on Human-Centered Explainable AI and Social Transparency

In episode 18 of The Gradient Podcast, we talked to Upol Ehsan, an Explainable AI (XAI) researcher who combines his background in Philosophy and Human-Computer Interaction to address problems in XAI beyond just opening the "black-box" of AI. You can find his Gradient article charting this vision here.Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on TwitterPapers Discussed:* Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations* Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions* Human-centered Explainable AI: Towards a Reflective Sociotechnical Approach* Expanding Explainability: Towards Social Transparency in AI systems* The Who in Explainable AI: How AI Background Shapes Perceptions of AI Explanations* Explainability Pitfalls: Beyond Dark Patterns in Explainable AIExciting update! In addition to listening to the audio recording, you can now experience the interview over at The Gradient’s main site, with live captions and the ability to jump to certain sections. In addition, you can experience it as follows: Interactive Transcript | Transcript PDF | Interview on YouTubeAbout Upol:Upol Ehsan cares about people first, technology second. He is a doctoral candidate in the School of Interactive Computing at Georgia Tech and an affiliate at the Data & Society Research Institute. Combining his expertise in AI and background in Philosophy, his work in Explainable AI (XAI) aims to foster a future where anyone, regardless of their background, can use AI-powered technology with dignity.Actively publishing in top peer-reviewed venues like CHI, his work has received multiple awards and been covered in major media outlets. Bridging industry and academia, he serves on multiple program committees in HCI and AI conferences (e.g., DIS, IUI, NeurIPS) and actively connects these communities (e.g, the widely attended HCXAI workshop at CHI). By promoting equity and ethics in AI, he wants to ensure stakeholders who aren’t at the table do not end up on the menu. Outside research, he is an advisor for Aalor Asha, an educational institute he started for underprivileged children subjected to child labor.Follow him on Twitter: @upolehsan Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Nov 23, 2021 • 54min

Miles Brundage on AI Misuse and Trustworthy AI

In episode 17 of The Gradient Podcast, we talk to Miles Brundage, Head of Policy Research at OpenAI and a researcher passionate about the responsible governance of artificial intelligence. Subscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSLinks:* Will Technology Make Work Better for Everyone?* Economic Possibilities for Our Children: Artificial Intelligence and the Future of Work, Education, and Leisure* Taking Superintelligence Seriously* The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation* Release Strategies and the Social Impact of Language Models* All the News that’s Fit to Fabricate: AI-Generated Text as a Tool of Media Misinformation* Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable ClaimsTimeline:(00:00) Intro(01:05) How did you get started in AI(07:05) Writing about AI on Slate(09:20) Start of PhD(13:00) AI and the End of Scarcity(18:12) Malicious Uses of AI(28:00) GPT-2 and Publication Norms(33:30) AI-Generated Text for Misinformation(37:05) State of AI Misinformation(41:30) Trustworthy AI(48:50) OpenAI Policy Research Team(53:15) OutroMiles is a researcher and research manager, and is passionate about the responsible governance of artificial intelligence. In 2018, he joined OpenAI, where he began as a Research Scientist and recently became Head of Policy Research. Before that, he was a Research Fellow at the University of Oxford's Future of Humanity Institute, where he is still a Research Affiliate).He also serves as a member of Axon's AI and Policing Technology Ethics Board. He completed a PhD in Human and Social Dimensions of Science and Technology from Arizona State University in 2019.Podcast Theme: “MusicVAE: Trio 16-bar Sample #2” from "MusicVAE: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music"Hosted by Andrey Kurenkov (@andrey_kurenkov), a PhD student with the Stanford Vision and Learning Lab working on learning techniques for robotic manipulation and search. Get full access to The Gradient at thegradientpub.substack.com/subscribe
undefined
Nov 18, 2021 • 1h 11min

Jeffrey Ding on China's AI Dream, the AI 'Arms Race', and AI as a General Purpose Technology

In episode 16 of The Gradient Podcast, we talk to Jeffrey Ding, a postdoctoral fellow at Stanford's Center for International Security and Cooperation(01:35) Getting into AI research(04:20) Interest in studying China(06:50) Deciphering China’s AI Dream(23:25) Beyond the AI Arms Race(36:45) China's Current Capabilities in AI(46:45) AI as a General Purpose and Strategic Technology(57:38) ChinaAI Newsletter(01:04:20) Teaching AI to Policy People(01:06:30) Current Focus(01:09:10) Interests Outside of Work + OutroSubscribe to The Gradient Podcast: Apple Podcasts | Spotify | Pocket Casts | RSSJeffrey Ding (@jjding99) is a postdoctoral fellow at Stanford's Center for International Security and Cooperation, sponsored by Stanford's Institute for Human-Centered Artificial Intelligence, as well as a research affiliate with the Centre for the Governance of AI at the University of Oxford. His current research is centered on how technological change affects the rise and fall of great powers, with an eye toward the implications of advances in AI for a possible U.S.-China power transition. He also puts out the excellent ChinaAI newsletter, which has (sometimes) weekly translations of Chinese-language musings on AI and related topics. Podcast Theme: “MusicVAE: Trio 16-bar Sample #2” from "MusicVAE: A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music"Hosted by Andrey Kurenkov (@andrey_kurenkov), a PhD student with the Stanford Vision and Learning Lab working on learning techniques for robotic manipulation and search. Get full access to The Gradient at thegradientpub.substack.com/subscribe

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode