

Opinionated History of Mathematics
Intellectual Mathematics
History of mathematics research with iconoclastic madcap twists
Episodes
Mentioned books

May 10, 2021 • 49min
Maker’s knowledge: early modern philosophical interpretations of geometry
Philosophical movements in the 17th century tried to mimic the geometrical method of the ancients. Some saw Euclid—with his ruler and compass in hand—as a “doer,” and thus characterised geometry as a “maker’s knowledge.” Others got into a feud about what to do when Euclid was at odds with Aristotle. Descartes thought Euclid’s axioms should … Continue reading Maker’s knowledge: early modern philosophical interpretations of geometry

Mar 10, 2021 • 51min
“Let it have been drawn”: the role of diagrams in geometry
The use of diagrams in geometry raise questions about the place of the physical, the sensory, the human in mathematical reasoning. Multiple sources of evidence speak to how these dilemmas were tackled in antiquity: the linguistics of diagram construction, the state of drawings in the oldest extant manuscripts, commentaries of philosophers, and implicit assumptions in … Continue reading “Let it have been drawn”: the role of diagrams in geometry

Jan 20, 2021 • 1h 18min
Why construct?
Euclid spends a lot of time in the Elements constructing figures with his ubiquitous ruler and compass. Why did he think this was important? Why did he think this was better than a geometry that has only theorems and no constructions? In fact, constructions protect geometry from foundational problems to which it would otherwise be … Continue reading Why construct?

Dec 10, 2020 • 41min
Created equal: Euclid’s Postulates 1-4
The etymology of the term “postulate” suggests that Euclid’s axioms were once questioned. Indeed, the drawing of lines and circles can be regarded as depending on motion, which is supposedly proved impossible by Zeno’s paradoxes. Although whether these postulates correspond to ruler and compass or not is debatable, especially since Euclid seems to restrict himself … Continue reading Created equal: Euclid’s Postulates 1-4

Nov 3, 2020 • 44min
That which has no part: Euclid’s definitions
Euclid’s definitions of point, line, and straightness allow a range of mathematical and philosophical interpretation. Historically, however, these definitions may not have been in the original text of the Elements at all. Regardless, the subtlety of defining fundamental concepts such as straightness is best seen by considering the geometry not only of a flat plane … Continue reading That which has no part: Euclid’s definitions

Oct 4, 2020 • 35min
What makes a good axiom?
How should axioms be justified? By appeal to intuition, or sensory perception? Or are axioms legitimated merely indirectly, by their logical consequences? Plato and Aristotle disagreed, and later Newton disagreed even more. Their philosophies can be seen as rival interpretations of Euclid’s Elements. Transcript What kinds of axioms do we want in our geometry? How … Continue reading What makes a good axiom?

Sep 8, 2020 • 36min
Consequentia mirabilis: the dream of reduction to logic
Euclid’s Elements, read backwards, reduces complex truths to simpler ones, such as the Pythagorean Theorem to the parallelogram area theorem, and that in turn to triangle congruence. How far can this reductive process be taken, and what should be its ultimate goals? Some have advocated that the axiomatic-deductive program in mathematics is best seen in … Continue reading Consequentia mirabilis: the dream of reduction to logic

Jul 30, 2020 • 42min
Read Euclid backwards: history and purpose of Pythagorean Theorem
The Pythagorean Theorem might have been used in antiquity to build the pyramids, dig tunnels through mountains, and predict eclipse durations, it has been said. But maybe the main interest in the theorem was always more theoretical. Euclid’s proof of the Pythagorean Theorem is perhaps best thought of not as establishing the truth of the … Continue reading Read Euclid backwards: history and purpose of Pythagorean Theorem

Jun 21, 2020 • 40min
Singing Euclid: the oral character of Greek geometry
Greek geometry is written in a style adapted to oral teaching. Mathematicians memorised theorems the way bards memorised poems. Several oddities about how Euclid’s Elements is written can be explained this way. Transcript Greek geometry is oral geometry. Mathematicians memorised theorems the way bards memorised poems. Euclid’s Elements was almost like a song book or … Continue reading Singing Euclid: the oral character of Greek geometry

May 15, 2020 • 42min
First proofs: Thales and the beginnings of geometry
Proof-oriented geometry began with Thales. The theorems attributed to him encapsulate two modes of doing mathematics, suggesting that the idea of proof could have come from either of two sources: attention to patterns and relations that emerge from explorative construction and play, or the realisation that “obvious” things can be demonstrated using formal definitions and … Continue reading First proofs: Thales and the beginnings of geometry


