

HVAC School - For Techs, By Techs
Bryan Orr
Real training for HVAC ( Heating, Ventilation, Air Conditioning and Refrigeration) Technicians. Including recorded tech training, interviews, diagnostics and general conversations about the trade.
Episodes
Mentioned books

Sep 29, 2016 • 44min
Solder Rings, Thermal Imaging and My Grouchy Brother
In this episode of HVAC School, I talk with my brother Nathan... and he whines a lot about cool tools I like. As you might have guessed, Nathan is in the camp of people who believe that proper training promotes good practices; fancy tools won't make an outstanding tech. Even though I respectfully disagree with him on some things, he has a point. Tools will only be useful if a tech knows how to use them. They should make your life easier, but they shouldn't have much bearing on performance. He doesn't like wasting money or time on tools that probably won't help him. So, he doesn't like solder rings or thermal imaging cameras. On the other hand, I'm in the "tool nerd" camp. I love new technology and think tools can make us do much better work if we learn how to use them properly. On the job and in my spare time, I enjoy reading up on the latest technology and trying out the newest tools. Missing out on the newest "wow!" tools is a fear of mine. Spending money on a tool that will help me do better, more efficient work is ALWAYS worth it. I think solder rings and thermal imaging cameras are cool and can be put to good use. We talk about how efficiency, organization, training, job performance, and customer trust relate to tools. We can find some common ground in some areas, even if we have fundamentally different attitudes toward tools. Oh, and we talk about digital gauges and the jumping spider that lives in Nathan's van. —Bryan As always, if you have an iPhone, subscribe HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.

Sep 22, 2016 • 44min
The Basics of Moving Heat
In this episode of HVAC School, Bryan talks to some apprentices about basic thermodynamics. That is the fancy scientific way of saying that we're moving heat. The way we think of "hot" and "cold" is relative to our comfort. However, the scientific concepts of "hot" and "cold" are very different from our relative understandings of those qualities. For instance, there is only ONE value of "cold" in the universe: absolute zero (0 kelvins, -460°F). Any temperature above that contains heat. Heat and temperature are NOT synonymous. Instead, heat refers to molecular motion, and temperature is an average measurement of molecular motion. Therefore, not all heat results in a temperature change. For example, adding heat to an ice cube at 32°F (0°C) changes the ice cube from a solid to liquid water. The heat added is called latent heat. Heat cannot move unless there is a differential in temperature, and it always moves from an object with more heat to one with less heat. Everything in nature tends towards equilibrium, and heat is no exception. In those cases, heat transfer will theoretically occur until both objects are at the same temperature. There are three main methods of moving heat: conduction, convection, and radiation. Conduction moves heat when a warmer object touches a cooler one. Convection occurs when heat moves through a fluid. Radiation occurs when heat moves on electromagnetic waves, such as when the sun's heat passes through a window. Join us as we cover: Heat & temperature and the difference Boiling and superheat Fahrenheit, Celsius, and Kelvin scales Absolute zero Molecular motion Hot and cold British Thermal Units (BTUs) Tons of air conditioning (and BTU/ton) Energy conversions Pressure and its effect on temperature Conduction, convection, radiation How heat transfer works in HVAC/R systems If you want to learn more about heat transfer, check out this article. As always, if you have an iPhone, subscribe HERE, and if you have an Android phone, subscribe HERE.

Sep 16, 2016 • 45min
Why a TXV instead of a TEV?.. or a CSV?
In this episode of HVAC School, Bryan talks to Leslie about the deceptive TXV. Thermostatic expansion valves, also known as TXVs or TEVs, are metering devices that maintain superheat. They contain an external equalizer. External equalizers give the pressure reading that you would normally take with a suction gauge at the end of the evaporator coil. They supply the closing force to the TXV. TXVs also contain a sensing bulb. The sensing bulb picks up the superheat on the suction line. When a vapor is superheated, its temperature exceeds its saturation temperature. The superheat value indicates how much the vapor temperature exceeds its saturation temperature. The bulb uses that superheat reading to adjust the TXV's opening force. System diagnosis can be tricky with TXVs, and you must set the charge by subcool on TXV systems. (Still check the superheat and follow manufacturer instructions, though.) However, TXV issues are pretty straightforward. Many of their issues deal with an undercharged sensing bulb. In those cases, you will notice issues with the opening force that acts on the valve. When replacing a valve, you typically make a new port for the external equalizer. However, getting solder in the tube can block off the closing force of the equalizer. Restrictions are also common issues for TXVs, and improper superheat is an indicator of a TXV restriction. When we think about the way TXVs manage superheat, "TXV" seems like a misnomer. We might be better off calling them "constant superheat valves" (CSVs). In addition, Bryan and Leslie discuss: Why Bryan doesn't like the name TXV Bulb, external equalizer, and spring forces Superheat and subcool Evaporator load How a TXV is supposed to work and how they fail As always, if you have an iPhone, subscribe HERE, and if you have an Android phone, subscribe HERE. Thanks to Daniel Anderson for making this his first episode suggestion.


