

HVAC School - For Techs, By Techs
Bryan Orr
Real training for HVAC ( Heating, Ventilation, Air Conditioning and Refrigeration) Technicians. Including recorded tech training, interviews, diagnostics and general conversations about the trade.
Episodes
Mentioned books

Nov 21, 2019 • 57min
High Efficiency Gas Furnaces, Common Issues w/ Jim Bergmann
Jim Bergmann is back on the podcast. This time, he talks about common faults with high-efficiency 90+ condensing gas furnaces and their installation. Like A/C units, 90+ furnaces often suffer from clogged drain lines. Other common problems stem from issues with inputs, temperature rise across the appliance, trapping, and venting. On high-efficiency gas furnaces, procedures like clocking the gas meter are much more important than on an 80% gas furnace; you must clock the gas meter to get the proper inputs. To get the furnaces to condense properly, you need to make sure you control excess air and get the temperature rise in the correct range. During the adjustment process, combustion analysis remains important as ever on 90+ gas furnaces. CO poisoning is always a deadly possibility on any sort of gas appliance work, and too many things can go wrong. You must use a combustion analyzer every step of the way. In high-efficiency gas furnaces, you essentially condense water out of the fuel-air mixture. (Think about water dripping out of your car's exhaust pipe in the winter.) Many furnaces counterflow, meaning that the flue gas gets pulled down instead of wandering upward. We need cold return air to meet with cool flue gases for optimal condensate production. Two-stage 90+ furnaces also use two-speed induced draft fans, which normally require an exhaust accelerator. Issues pop up in retrofit systems when we don't update the venting system to prevent the recirculation of flue gases. Two-stage furnaces tend to be very efficient, but they may not be as comfortable as single-stage furnaces. Jim and Bryan also discuss: Chemical causes of premature failure Orifices, fuel pressure, and impingement Heat exchangers Order of operations for checking condensate drainage CO poisoning Byproducts of combustion Energy savings of 90+ furnaces over 80% furnaces Interlocked systems Filtration Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Nov 19, 2019 • 15min
Short #80 - 3 Differences Between Followers and Leaders
Bryan explains the core differences between followers and leaders. There is nothing wrong with being a follower, but if you are ready to move into leadership roles, here are his tips. Leaders primarily leverage the work of other people. Conversely, followers have limits to their abilities and their earning potential; the leaders are the ones who set those limits. Good leaders create opportunities for others. Followers who attempt to be leaders are more likely to wait rather than move, complain rather than change, and assume rather than ask. Leaders actively seek out opportunities and tend to act rather than wait and assume that opportunities will come their way. Followers also accept but complain about the status quo, whereas leaders work to change their circumstances. Communication is a major area of difference between followers and leaders. Leaders ask questions, communicate, and propose ideas or solutions; followers typically hesitate to initiate communication and expect others to give them answers and opportunities. Followers also tend to think in terms of what they would do, not what they can actually do; they don't realize their abilities to make a difference and would prefer that the changes happen from the outside. On the other side, leaders seize opportunities to initiate change and create opportunities for other people (even if those are opportunities to fail safely). Moreover, the mark of a good leader is the number of followers who agree with their vision; leaders are also willing to make sacrifices for their followers and manage their resources well. True leaders also know how to listen to others, think broadly, and be kind but truthful; they don't take pride in being "brutally honest" or "knowing it all." Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Nov 16, 2019 • 59min
Ductless and VRF - Good, Bad & Ugly #LIVE
Some great live guests join the podcast to discuss the advantages, disadvantages, and challenges of ductless and VRF equipment. We started off working on ductless equipment with Mitsubishi, especially installing them in lanais. Sunrooms have large amounts of radiant heat coming in, and the heat load often warrants getting an A/C system just for the sunroom/lanai. We even began oversizing them a bit (which was a lesson learned). We also learned that mini-split ductless systems tend to have filthy blower wheels because moisture tends to build up on them. However, bib kits make cleaning the blower wheel in place an easy process. High-wall ductless systems also work in houses, not just sunrooms. However, they may have issues dehumidifying effectively. To remove more latent heat, you have to ramp down your blower and ramp up your compressor to get your coil colder. Overall, Bryan is not a large fan of using multi-zone ductless units in residential applications UNLESS they are replacing window units. VRF systems are typically used in commercial applications. The systems typically use cassette-type units or low-static fan coils, unlike high-wall ductless units. Although VRF and high-wall ductless units tend to have different sets of advantages and disadvantages, both of them struggle a bit with humidity and may need supplemental dehumidification. Overall, while VRF and ductless systems are desirable because they can control sensible capacity, those modulation capabilities can also lead to serious problems in wet climates. We also discuss: Condensate pumps Blower wheel set screw issues Ductless and VRF filtration Sensible heat ratio (SHR) VRF serviceability Dehumidification vs. efficiency Regional VRF manufacturing practices EER vs. SEER Daikin dry mode What should HVAC systems really control? Engineering commercial buildings VRF refrigerant loss ICM493 controls Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Nov 14, 2019 • 48min
Floating Head w/ Jamie Kitchen
Jamie is back on the podcast. This time, he talks about the merits and pitfalls of floating head pressure and why you might care. There is a relationship between floating head and floating suction, though the latter is easier to understand. You can stage fans to come on at certain temperatures, but you'll always be running fans above a certain temperature. When temperatures are below that temperature, you can save energy by not running the fans. However, you still have to worry about feeding the evaporator coil sufficiently. Floating head pressure refers to dropping the pressure differential across the metering device while letting it feed the evaporator coil properly. Allowing the head pressure and temperature to float is beneficial in applications that use large amounts of electricity and have low profit margins, such as grocery refrigeration. This practice is also great for energy savings in mild climates that stay below 80 degrees for most of the year. To use floating head, you first have to look at your metering device capacity. The metering device must have enough capacity to feed the evaporator coil and compressor adequately for the load conditions. Then, you must look at your other components' capacity balance, namely your evaporator and compressor. Sometimes, you also have to use floating suction to combat dehumidification issues that may result when you use floating head pressure. Jamie and Bryan also discuss: Energy efficiency benefits of floating the head pressure Compression ratio Fan staging and variable-speed fans Metering device sizing for load demands Electronic expansion valves (EEVs) vs. TXVs Evaporator and compressor sizing in relation to each other Evaporator pressure controls Oversized condensing units Temporary fixes to save product vs. permanent fixes Ease of locating and purchasing replacement parts Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Nov 12, 2019 • 16min
Short #79 - Circuit Breaker Facts
In this short podcast episode, Bryan talks about circuit breaker facts. He also explains why they trip, what they do, and some different types and considerations. Circuit breakers break the circuit during an overcurrent situation. These do NOT handle all overloads, such as locked rotor amps (LRA); these handle significant overloads, such as shorts (when current takes undesigned paths). In air conditioning, we can size our fuses and circuit breakers a bit larger than usual, which prevents tripping from small spikes instead of truly dangerous or prolonged overload conditions. There are thermal and inductive circuit breakers. A thermal circuit breaker uses heat to determine when to trip; these are common breakers but are prone to nuisance trips from poor connections or on days with high ambient temperature. Inductive trip breakers are magnetic and trip at a certain point of inductance; these are not easily affected by ambient temperature but can be expensive. A breaker's temperature can tell you a bit about its condition. Hotter breakers may be closer to tripping. However, arc fault breakers, a type of thermal breaker, can also run hot but work fine, which may confuse technicians. You can use thermal imaging cameras or infrared thermometers to compare breaker temperature. Dielectric grease is a good tool but requires plenty of attention. You need to have the right connectors before you even reach for the grease. The dielectric grease protects the connectors from corrosion (from the outside), and it should NOT go directly on the connectors. Some people also use anti-seize grease; no matter which grease you use, you must be careful and avoid adding resistance. Bryan also discusses: Proper torque settings Measuring voltage drop across the device Using breakers as switches Double-lugging Arc fault vs. GFCI Learn more about Refrigeration Technologies HERE. If you have an iPhone subscribe to the podcast HERE and if you have an Android phone subscribe HERE.

Nov 7, 2019 • 41min
The Lost Art of Steam - Revisited
In this episode from the archives, Dan Holohan joins us on the podcast and talks about his vast experience in the lost art of steam learned from long-dead men. Steam heating is a "lost art" nowadays; it has become increasingly uncommon and has been disappearing since the Vietnam War. Many people who understood steam heating either retired or died after the Vietnam War. Many elements of steam heating are difficult to understand or surprising. (For example, steam pressure has a surprising relationship with velocity: low-pressure steam moves through piping much more quickly than high-pressure steam.) So, Dan Holohan is on a mission to revive that knowledge and teach the newer generations about the lost art. There are many older steam heating systems still operating today, especially in the older large buildings in New York. Dan learned a lot about steam heating when working on these old systems and optimizing them. Most of the time, he optimized those systems by removing unnecessary accessories, not adding components like steam traps. Many old boilers used coal as a heat source. Nowadays, many old boilers have been fitted with conversion oil burners with thermostats, but they are still piped for coal. Some systems now have multiple risers or massive vents on the main riser to prevent the thermostats from getting too hot too early and satisfying the thermostat too early. We call that master venting, reducing pressure and allowing steam to move very quickly and efficiently. Dan also discusses: The 2-PSI standard Transportation metaphors for BTUs in steam Harmful renovations for old boilers Replacement vs. restoration mindsets Gaps in steam boiler education Monopolizing the market if you HAVE the education Boiler piping and venting Two-pipe vs one-pipe steam Find out more about Dan and hydronic heating at HeatingHelp.com. Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Nov 4, 2019 • 58min
What Makes a White Shirt Tech #LIVE
In this honest—maybe overly honest—live podcast, we talk about the dark side of white shirt techs. We also discuss ways the industry can make money while doing the fundamentals well. The term "white shirt" refers to a sales technician who prioritizes selling equipment over fieldwork; these technicians don't necessarily sell expensive products, but they lack technical expertise. The surefire way to tell if someone is a "white shirt" is to see if they can solve problems with their hands or if they just pull solutions from a menu of new products. However, "white shirts" do have some skills we can learn from. They are usually great communicators, which is an excellent characteristic in our trade. Honesty is also important, though, and great communication can only be a good thing if it's backed up by honesty. "White shirts" lie, and they make excuses for their lies. Unfortunately, many of us want to do good work and make less than "white shirts." The problem may not be with the white shirt technicians; we contribute to the problem by undervaluing our expertise and quality work. Strangely enough, we rarely ever see white shirt technicians in commercial HVAC. That's because commercial HVAC is a far more expensive, less sales-oriented part of the industry. There is less of a need to push products onto the customer to make money. We also cover: The fine art of setting prices Sales tactics Made-up simplified product names ("heat rejector") Honest, straightforward, non-emotional communication Vetting technicians Deceptive training by salespeople What drives people to sell extra accessories "White shirt" profit margins Labor rates, diagnostic fees, and maintenance prices Hard start kits and potential misunderstandings Bad intentions vs. ignorance Billable time in residential vs. commercial HVAC Buyer's remorse Consulting vs. sales Surge protection Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Oct 31, 2019 • 39min
Callback Prevention Principles
In this podcast episode, Bert joins Bryan to talk about what he has learned to help prevent the dreaded callback on the job. Callbacks are bad news for customer service, time, and profit. However, the highest cost is the inconvenience caused to the customer. To reduce callbacks, Bert recommends communicating your expectations to your customer clearly; explain what the expected performance should be and how a customer should use their system. We need to do better at having conversations with the customer where we listen to them; we should not explain everything through the paperwork and walk away. Customers become less of a callback risk when technicians stay with them until they are no longer a risk. The technician must run the equipment to ensure that it's working and set expectations before they leave. This tip can be a bit tricky, as many of us have to move from one emergency to the next, but the extra time and effort will almost surely help prevent a callback. The goal is to get a system to last as long as possible without having a problem. Overall, hard skills are less important than soft skills when it comes to callback prevention. Many techs have the technical knowledge; far fewer take the time to listen to the customer and get the whole picture of the problem. When it comes to hard skills, callback prevention requires more attentiveness and skill application than the technical skills themselves. With all that in mind, the ultimate key to preventing callbacks is to take responsibility for ALL of your work: testing, setup, communication, and fixes. Bert and Bryan also discuss: "White-shirt" techs "Callback risk" customers Reducing loads by adding insulation How rain and temperature affect performance Recognizing a customer's budget Checking for wire rub-outs and loose/poor connections Visual observation Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HER

Oct 29, 2019 • 13min
Short #78 - 7 Tips for Newbies
This short podcast is for the newbies out there. For HVAC trade newbies, Bryan recommends applying 7 tips to help you win. When you start off in the trades, you'll want to check your mindset. Successful HVAC technicians are usually humble; recognize that you don't know everything. The truth is that nobody knows everything, and every other person has wisdom and knowledge to offer you. (However, don't mistake humility for a lack of confidence.) You'll also want to hang out with good people; you are the sum of the five people you spend the most time with, so you don't want your friends to drag you down intellectually or get you into trouble. (And make good use of your time!) Stay hydrated on the job! Water is the very best thing you can have on the job, especially during hot summers. To take care of your body, you will also want to wear safety glasses on the job and gloves when appropriate. Curiosity is also an incredibly important trait of successful techs. Push further to understand your work fully, and you will be much more successful in your career. If you are curious, you will bring more ideas to the table and have a better grasp on the work you do, which will hopefully help you get raises and promotions. Another extension of curiosity is to test what you know. Pursue a possibility and find all of its weaknesses; don't accept a solution as the truth without further investigation. Perhaps one of the most useful tips for newbies is to learn to be okay with failure. You sometimes won't have everything you need, whether that's a lack of tools or knowledge. Making difficult situations work is part of the job, and the fear of making mistakes should not hold you back. Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.

Oct 24, 2019 • 41min
Why is a Power Quality Meter Useful? w/ Jim Bergmann
Jim Bergmann returns to the podcast to talk about the power quality meter. He also discusses what it is good for and how to use one. A power quality meter accounts for the power factor in its measurements, and it measures true power in watts. We can notice failing capacitors and other issues that can cause a device to draw higher wattage. In inductive loads, the power factor will be less than 1. However, we can measure the power factor because the capacitor counteracts the inductive reactance and gets the power closer to unity; the current and voltage should be in phase with each other, so the circuit should be balanced. The main difference between watts and volt-amps (VA) is the power factor. Volt-amps represent the entire quantity of energy, watts represent power, and volt-amps reactive represent useless energy. So, the power factor is the difference between what makes watts useful and VA reactive unuseful. (Think about a pint of beer, which is VA: you can't drink the foam, which represents VA reactive, and the actual liquid beer is the watts. Unity would represent a pint of beer with no foam.) When looking at EER and SEER, the power quality meter helps you get a more accurate wattage reading, which allows technicians to determine efficiency more easily. You MUST know your power factor to measure wattage properly. Since consumers are billed on wattage, an accurate measurement is critical to make sure they're paying an appropriate price for energy. Jim and Bryan also discuss: Supco Redfish iDVM550 Matching capacitors to inductive loads Fan efficacy and PSC vs. ECM motors Back EMF Considerations for measuring frequency VFDs BTU capacity, amp draw, and efficiency Commissioning and benchmarking with power quality meters Single-phase vs. three-phase power factor tools Learn more about Refrigeration Technologies HERE. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE.