HVAC School - For Techs, By Techs

Bryan Orr
undefined
May 31, 2022 • 10min

Distributors and External Equalizers - Short #146

In this short podcast, Bryan talks about distributors and external equalizers and why we need to use them together. When older Carrier heat pumps (with pistons) would run in heat mode, the metering device would be outside. In those cases, the port on the liquid line would be on the opposite side of the metering device. So, you wouldn’t actually be measuring the liquid line pressure (high-side) if you measured it at that port while the system runs in heat mode. However, that pressure would be higher than the common suction pressure. That’s because distributors and distributor tubes also have a pressure drop associated with them AFTER the metering device.  Nowadays, TXV systems have external equalizers, which create an equalizing force inside the valve. The bulb pressure forces the valve open, and the equalizer pushes against that pressure to create a closing force. An internal equalizer would work fine on a system without a distributor or distributor tubes; however, those systems are few and far between. We need an external equalizer on systems with distributors because the pressure at the end of the evaporator coil is significantly lower than the pressure picked up by the valve. Without closing force, the TXV would theoretically force itself all the way open and flood the evaporator coil. External equalizers can get clogged, which results in a pressure buildup during the off cycle and forces the valve closed. They can sometimes get clogged when used on a Schrader port without a Schrader depressor inside the equalizer. Some people attempt to fabricate distributors in the field. It works in some cases, but in many cases, it’s best to use an engineered distributor for the best performance and efficiency. The distributors are individually designed to create an individual pressure drop.   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
May 24, 2022 • 12min

Center-Tapped Transformers - Short #145

In this short podcast episode, Bryan talks even more about sine waves and center-tapped transformers. Power is generated at the power plant when an energy source (such as steam) is used to drive a drive shaft. The resulting current can be mapped as sine waves, which actually represent points on a circle; there is a rotational magnetic field around stationary conductors, and the sine waves allow us to envision the positive and negative alternations as the rotation happens. Center-tapped transformers use “neutral” as a reference point. The secondary winding on a center-tapped transformer may have 240v power, but the center tap splits that 240v power into two legs of 120v power. There are two sine waves completely out of phase with each other, so we get 240v from peak to peak. Both sine waves cross at neutral. Even though the split-phase power consists of two separate sine waves, an oscilloscope would interpret the voltage as a single up-and-down wave with a higher peak and a lower valley. Center-tapped transformers do not necessarily create another phase of power; they merely turn neutral into a reference. If we were to measure that split-phase power as a single 120v sine wave with an oscilloscope, we would have to use neutral as our reference. To measure the separate sine waves for a total of 240v, we would need three probes: a reference at neutral and one reference on each side. Many European countries only use a single sine wave; center-tapped transformers are not commonplace in those countries, and neither is split-phase power. However, the split-phase power in the USA allows for more versatility; we can supply power to 120v appliances where we would otherwise need to use 240v ones.   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
May 17, 2022 • 16min

Beer & Power Factor - Short #144

Bryan describes the tricky concept of power factor and why we should care about it. He also compares power factor to a beer mug to make the topic easier to understand. Power is often represented on a sine wave, which is a curvy line that marks the state of electrical energy at different points on a circle. Power gets stronger and weaker, and it goes above and below the neutral line depending on the excess or deficit of electrons. Unity power factor refers to a power factor of 1, indicating that voltage and amperage are perfectly balanced; there is no lag. However, an inductance (a form of resistance) opposes the current and causes an imbalance between current and voltage. Power loss or quality refers to the difference between the input and output power that results.  Apparent power refers to volt-amps, which we’d traditionally consider to be the wattage; however, in an inductive load, the true or real power (wattage) accounts for that power loss and comes from volts x amps x power factor. We can imagine power factor as a mug of beer: apparent power (VA) is the entire mug, the foam is reactive power (wasted), and the beer itself is real power. The power company only charges for the real power, not the reactive power. However, a power factor closer to unity can help prevent motor windings or wires from overheating. To get closer to unity power factor, we need to make sure we have a run capacitor of the correct size. You can measure power factor with a power quality meter. Bryan also covers: Voltage and current Root mean square Inductive reactance Capacitance and how capacitors work Transformer VA ratings   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
May 10, 2022 • 10min

Motor Speed Facts - Short #143

Bryan lays down some motor speed facts in about 10 minutes in this short podcast episode. We can figure out how quickly a single-phase motor (PSC) will run if we understand how many cycles it will make per second. In the USA, the standard hertz is 60 Hz (60 rotations or magnetic alternations per second). Motors are inductive loads that create an electromagnetic field with a spinning rotor and stationary stator; the amount of poles on the stator determines how quickly the rotor spins (RPM). In the RPM counts, there are some allowances for slip. Slip varies depending on the load, with excessive loads causing more slip. Some multi-tap blowers have additional winding resistance and decreased current (due to the extra taps), which increase the slip. The rated load RPM usually accounts for the RPM at high speed, not medium or low speed with added resistance. On the other hand, variable-speed motors or ECMs are powered by a variable frequency (sometimes a variable frequency drive or VFD). The motor control takes the incoming electrical frequency and converts it into a new frequency (turning AC power to DC and controlling the cycle rate). These motors also tend to be more efficient as a result. The RPM is more variable on these motors with VFDs, whereas we could only manipulate the RPM of single-phase motors by changing the number of poles. When replacing a motor, you can’t use a replacement motor with a higher rated RPM than the original motor. The only way to change the RPM is to get a new motor with a different number of poles, increase slip to make it slower or decrease slip to bring it closer to synchronous speed, or adjust the frequency.     If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
May 5, 2022 • 54min

Value Design in High Performance Home HVAC w/ Comfort Squad

Neil Comparetto and John Semmelhack of the Comfort Squad join Bryan to discuss high-quality value design in a high-performance home. They explain how they design HVAC systems (heat pumps) for low-load homes in ways that are affordable, efficient, and comfortable. High-performance, low-load homes need to be energy-efficient AND comfortable, and it can be a challenge to get both. Manual J calculations aren’t as common as they probably should be, and it can be difficult to get accurate data about air leakage, power consumption, and radiant gains as well. So, John and Neil try to collect their own data and do aggressive load calculations to avoid the fudge factors that are all too common. The air velocity inside the ducts tends to be lower in these sorts of systems. When you have relatively low airflow in the ductwork of high-performance homes, you don’t need as many ducts or for the ductwork to be particularly large. With minimalistic ductwork, supply register placement, face velocity, and throw become very important, especially because those factors are responsible for air mixing. When the duct design conditions are right and the load has been matched, you typically get long runtimes and good air mixing. In many cases, John and Neil use variable-speed motors in their outdoor units that allow for high heating performance. The capacity ranges are wide, allowing the units to run even during exceptionally low-load conditions. They also use flex ducts due to their pre-insulation, noise suppression, and inexpensiveness; they just try to keep it sealed and avoid compressing the ductwork.  Neil, John, and Bryan also discuss: Monitoring load conditions with software Design considerations for filter grilles and central returns Room pressurization and airflow testing Transfer grilles The Coanda effect and curved-blade registers Vent sizing Flex duct installation best practices Duct fittings ERVs   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Apr 28, 2022 • 37min

Putting Contractor Success First w/ METUS

Lacey Dietz with METUS and Scott Arnold with Rycor HVAC join the podcast to talk about how the industry can start putting contractor success first. They talk about Mitsubishi Electric (METUS)’s commitment to contractor success and what that looks like. METUS’s contractor program aims to provide training, support, and recognition to create a community of successful contractors. Support comes in the form of marketing, training, tech support, and customer service, and those services are available to contractors who sell and represent Mitsubishi’s products. As a contractor who works with Mitsubishi, Scott has been able to specialize the labor in his business and grow his business as one that specializes in installing Mitsubishi systems. Mitsubishi also provided top-quality training and allowed Scott to streamline his training process and get his apprentices feeling confident and ready to go into the field quickly. Adoption rates for Mitsubishi’s ductless technology have increased over the past couple of years, especially as people have spent more time in their homes and started re-thinking indoor comfort. Those who are educated about heat pumps also tend to appreciate the technology as well as the mini-split units’ small footprints in their homes. The mini-split units’ smaller environmental impact than unitary systems is also a plus.  Lacey, Scott, and Bryan also discuss: Scott’s work with heat pumps in New York Programs that benefit contractors Mitsubishi’s products and supply chain management Diamond Contractor program and tiered contractors Mitsubishi’s lead generation program and referrals Ductless vs. unitary systems Bringing education into sales Dealing with business growth in a challenging labor market Overcoming objections   Learn more about Mitsubishi and its products, visit https://www.mitsubishicomfort.com/, and you can learn how to become a contractor at https://discover.mitsubishicomfort.com/contractors.   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Apr 26, 2022 • 9min

Retrotec - IBS 2022

Sam Myers with Retrotec talks to Bryan about pressures in the home and why they matter for HVAC solutions at IBS 2022. Technicians focus a lot on ductwork and airflow, but many of them don’t focus on how the building envelope impacts HVAC performance. A lot of the HVAC equipment’s performance is affected by the push and pull of air caused by leaky areas in the building envelope. If you have a room with too much air and another room with too little, you will have unbalanced pressures. Unbalanced pressures may result in discomfort and latent load issues, especially when unconditioned air is pulled in through the attic. Sealing the envelope well and using dampers as necessary can minimize the comfort issues caused by pressure imbalances in the home. Instead of just using manometers for static and gas pressure, we can also use high-resolution manometers under doors to pick up pressure differences. However, the manometer MUST be high-res to pick up those subtle (but palpable) differences in pressure. A blower door is also a great tool, especially when you use it with a thermal imaging camera; the blower door amplifies the temperature effects that a thermal camera will detect, especially if you also have a good delta T.   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Apr 21, 2022 • 2h 43min

Birmingham training class

This podcast is a class that Bryan taught for BTrained in Birmingham, AL. He covers troubleshooting, installation, and commissioning best practices with a focus on the fundamentals. To be a good troubleshooter, you must be able to find the problem, identify the source of the problem, fix the problem, and optimize performance based on your data, the customer’s comments, and your observations. The Five Pillars of diagnosis aren’t comprehensive diagnostic or charging criteria, but they can help you charge or diagnose a system. Isolation diagnosis works best for electrical components; you isolate the problem area from the system and see how the system works without the suspected issue. If the system operates normally without the component in question, then we can conclude that our hypothesis about the “problem” part was correct. Wide-narrow-wide troubleshooting is an approach that allows you to inspect the entire system, zero in on the problem, and optimize the entire system. By starting wide, going narrow, and going wide again, you can troubleshoot holistically. Installations take place in several phases: pre-planning, planning, demo, installation, and commissioning. Many people place a lot of emphasis on the demo and installation and neglect the conversations and procedures associated with pre-planning, planning, and commissioning. Bryan also covers: Heuristics and mental shortcuts Evaporation vs. boiling Rules of thumb Head pressure, suction pressure, and compression ratio Energy transfer fundamentals What superheat and subcooling really indicate Restrictions and temperature drop Delta T “Redneck” compressor test Testing circuits Useful measurements and test instrumentation Causes of compressor failure Measuring airflow Low vs. high static pressure Bringing tribal knowledge to building design Ductless systems, ventilating dehumidification, and sensible heat ratio Manual J, attics, and combustion air Radiant barriers and heat transfer Supply relative humidity Dehumidifier configuration and system design Bad envelopes Vented attics Duct upgrades Total effective length and turning vanes Evacuation   Learn more about BTrained at https://btrained.net/ or on the BTrained YouTube channel at https://www.youtube.com/channel/UCnlDsWHT68gVwPrYYO5vhrw.  If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Apr 19, 2022 • 15min

Ross Trethewey IBS 2022 - Short #141

Bryan has a bit of an industry nerd out with Ross Trethewey from “This Old House” and TE2 Engineering at IBS 2022 (the International Builders’ Show). Ross’s education and career have focused on mechanical engineering, especially with sustainable solutions. In building science, the key mindset is to think of the building as a system. Using that school of thought, Ross has developed building science and HVAC solutions that also consider indoor air quality and ventilation, such as hybrid VRF systems.  Many of Ross’s solutions take the best aspects of air-source and ground-source heat pumps and apply those to hydronics. Some exciting applications for those types of systems could include simultaneous heating and cooling as well as the integration of domestic hot water. Demand control ventilation has been used for a long time in the commercial world, but its possible use in residential applications is another exciting thing to consider. With proper control devices, DCV would give us the opportunity to control temperature, humidity, VOCs, carbon monoxide, carbon dioxide, and radon. In residential applications, DCV has to be a delicate balancing act, as bringing in too much outdoor air would require us to condition that air. High latent loads also present challenges to some of the ventilation solutions in development. Serviceability is another challenge to DCV usage in residential applications; whenever an innovative system is brought to the market, very few people will know how to fix and maintain those systems. One of the possible solutions is to create instruction manuals and give education similar to what already exists for package units. 3D models and animations also help make complicated systems easier to understand. Ross’s presence on “This Old House” marks the third generation of Tretheweys on the show. Ross is excited to talk about building science and HVAC innovations and concepts while on the show. Heat pumps are also getting better, especially due to inverter-driven compressors, enhanced vapor injection, advanced control systems, and ECMs. Heat pumps are safer than gas-fired equipment, and we have made them work well in subzero temperatures (because we’re nowhere near absolute zero). If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Apr 14, 2022 • 40min

Replacing a Compressor - Step by Step

In this podcast, Bryan goes through the entire process of replacing a compressor step-by-step. This process is what the Kalos team uses to replace a failed compressor and make sure it doesn’t fail again. Before replacing a compressor, you must figure out how the compressor failed; grounded conditions often lead to acid, so it’s a good idea to test for acid and see if you need to address a burnout. In any case, make sure you have the correct tools for the job (including a compatible replacement compressor). When you arrive at the job site, be sure to confirm the diagnosis and check to see if the unit has a hard start kit. That’s also the time to do a visual inspection, checking airflow as well as the filter, blower, and coil cleanliness. Recover and weigh out the refrigerant charge. Unscrew the foot bolts and lift the old compressor out. Then, seal the compressor once it’s out. If you’re dealing with burnout, clean out or replace the accumulator (you will install/reinstall it shortly). Cut out and replace the existing liquid line drier and install a suction drier in a place where it can be easily removed.   When piping in the new compressor, make sure you protect heat-sensitive parts and do a quality brazing job. Install the new capacitor and hard start kit, too, keeping wiring away from places where it may chafe. Test for leaks, evacuate the system, charge the system, and check your five pillars as well as voltage. Finish by cleaning the drain and double-checking airflow. Bryan also covers: Misdiagnosed compressor failure Parts needed for replacing a compressor What makes a compatible replacement compressor? Billing and pricing Alloys and fluxes Replacing TXVs, capacitors, contactors, and reversing valves Cutting vs. unsweating  Suction driers and pressure drop Charging considerations   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app