HVAC School - For Techs, By Techs cover image

HVAC School - For Techs, By Techs

Latest episodes

undefined
Sep 15, 2022 • 43min

HVAC Measurement Types and Benefits

Eric Kaiser joins the HVAC School podcast to talk about HVAC measurement types and the benefits of taking each one. He also talks about point measurements and data trends. Point measurements include static pressure, voltage readings, and readings provided by gauges. We only take those measurements once. However, when you track those on several occasions over time, you can build data trends. Single-point measurements give us information about what is happening at the moment, but they don’t give us a long-term view of the system's health. Absolute and differential measurements also have different purposes entirely. Absolute measurements require us to compare a reading to a specific, unchanging reference point, but differentials compare one measurement to another. When we turn point measurements into trend measurements, we can see some degree of causation. Changes in data trends indicate that a problem occurred at a certain point in time and could be due to changes that coincided with the deviation from the norm. However, that’s intermittent trending that relies on us to take point measurements at spaced-out points in time. Continuous trending allows us to use sensors and test instruments that map changes constantly. At the end of the day, point measurements are like snapshots, and continuous data trends are like videos; the former only shows part of the picture, and the latter can help us solve more difficult problems by giving us a more complete idea of what’s happening. Eric and Bryan also discuss: Qualitative vs. quantitative measurements Filter restrictions and static pressure Gauge vs. atmospheric pressure Combined trend measurements How tool usage and calibration impact measurements Non-invasive testing Recorded data and sample frequency Comparative troubleshooting in spaces with similar equipment Resolution vs. accuracy vs. precision   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Sep 8, 2022 • 55min

Ventilation and 62.2 Intro & Rant w/ Genry Garcia

Genry Garcia joins the podcast to give an intro to ASHRAE Standard 62.2. He and Bryan also share a nice rant about accountability in HVAC design. Standard 62.2 is the ventilation standard for low-rise residential buildings, which dilutes airborne contaminants like VOCs and CO2. Before coming up with a ventilation strategy, we need to assess the leakage rate of the building, such as via a blower door test. However, we also need to consider how bringing in outdoor air might negatively affect efficiency and comfort if we don’t do it right.  Exhaust ventilation removes air from the structure and relies on infiltration to bring air back in. Instead, we can use controlled intake air, which is brought in from the outdoors instead of unconditioned spaces in the home.  Ventilating dehumidification is a strategy we can use to comply with 62.2; we can bring in filtered outdoor air and dehumidify it before injecting it into the supply ductwork. When we introduce ventilation in a Florida installation, bringing it in through the return is typically not ideal, especially if it’s unfiltered. People can go wrong with 62.2 if they remain shortsighted; when designing ventilation systems, we need to think about a lot more than the load calculations and CFM of fresh air needed. We need to focus on accessibility, ventilation strategies, and location-specific installation practices. Consulting tradespeople during the design process would likely make ventilation systems much more accessible, sensible, and effective. Genry and Bryan also discuss: Ventilation as an IAQ strategy Infiltration credits Pressurization Continuous vs. spot measurement Holding the right people accountable during the design phase Intermittent vs. continuous ventilation Automating ventilation with sensors Controlling ventilation on a timer Genry’s ideal methods of controlling ventilation   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Sep 1, 2022 • 47min

Pressure Enthalpy without Tears

RACT manual co-author Eugene Silberstein joins the podcast to talk about the titular topic of his book, Pressure Enthalpy Without Tears.  Pressure Enthalpy Without Tears is a book that introduces engineering concepts to HVAC technicians in a way they can understand and apply in the field. Enthalpy is a fancy way of saying “heat,” and we use it to refer to the total heat content (BTUs). The pressure-enthalpy chart shows the relationship between the refrigerant pressure and enthalpy in a system; it’s like a P-T chart that shows the relationship between heat content instead of temperature.  Each refrigerant has its own pressure-enthalpy chart, but the points and lines on the chart usually form a right trapezoid. Dirty air filters and other less-than-ideal conditions can distort the trapezoid or shift it on the chart. Each side of the trapezoid represents the refrigerant inside a major component of the HVAC system: evaporator, compressor, condenser, and metering device. The pressure-enthalpy diagram allows you to get a look at individual components while keeping the entire system in mind.  To plot points on a pressure-enthalpy chart, you need the high side pressure, low side pressure, condenser outlet temperature, evaporator outlet temperature, and compressor inlet temperature. Pressure is usually measured in absolute units (rather than gauge units), but ballpark estimates are typically sufficient. Entropy is another concept we need to consider. Compression theoretically leaves no additional entropy and is reversible. Crossing a line of entropy means that a process is no longer reversible. Eugene and Bryan also discuss: Technicians vs. engineers Temperature vs. heat content Psychrometric and pressure-enthalpy charts Using the pressure-enthalpy diagram to assess operation costs Electrical measurements Predicting compressor failure Putting passion into learning and trades education   You can visit https://www.escogroup.org/ to purchase Pressure Enthalpy Without Tears and access all of ESCO Group’s resources. You can also use the code HVACSchool22 for a discount on ESCO Group’s eLearning services. If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Aug 30, 2022 • 10min

Total Heat of Rejection - Short #152

In this short podcast, Bryan talks about THOR, total heat of rejection. He explains what it is and why we should care about it when working on HVAC/R systems. THOR is another aspect of pressure-enthalpy calculations, along with net refrigeration effect (NRE) and total heat of compression. When we talk about system capacity, we’re often referring to heat absorbed in the evaporator coil (NRE).  Heating is on the opposite side of the coin; when we bring heat into a home, we care more about how much heat is rejected than absorbed. That’s where THOR comes in. More heat is rejected at the condenser than absorbed in the evaporator. The total heat content increases due to additional heat being absorbed in the suction line. Compressors also have motors that aren’t 100% efficient, so a bit of inefficiency also adds a small amount of heat to the refrigerant (in a system operating normally). All of that heat adds up to the total heat of rejection (THOR).   Even though a higher total heat of rejection is desirable when we want heat pumps to bring heat into the home, we don’t want our compression ratios and discharge temperatures to get too high. We have to avoid oil breakdown and other negative effects. So, modern heat pumps use variable frequency drive technologies or liquid or vapor injection to get a lot of capacity out of the compressor without overheating it. The effective THOR only happens in the condenser. Some heat rejection may occur in the discharge line, but none of that is of use to us when we need to bring heat indoors.   Check out Eugene Silberstein’s book, Pressure Enthalpy Without Tears, at https://escogroup.org/shop/itemdetail.aspx?ID=1445.  If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Aug 25, 2022 • 1h 19min

Hard Start vs. Easy Start

Matteo Giovanetti from Micro-Air joins the HVAC School podcast to talk about the differences between a hard start and an EasyStart. Micro-Air’s “EasyStart” provides a soft start rather than a hard start. A hard start abruptly ramps up the voltage and current to the motor start; a soft start is a much gentler start that results from a gradual voltage and current increase on the start AND run windings.  The EasyStart marks a paradigm shift in how we think about “saving” compressors. It attempts to avoid drawing unnecessary inrush current, which is very common with hard starts. Hard starts may even lead to premature failure if the potential relay fails and can’t take the start capacitor out of the circuit.  EasyStart has a different wiring configuration compared to hard start kits. A hard start kit consists of a start capacitor wired in series with a potential relay, which increases the torque on the compressor and removes the start capacitor from the circuit. The EasyStart has four wires; the black and white wires (L1 and L2) connect directly to the contactor, a brown wire that splices directly to the run winding, and an orange wire to the HERM terminal of the run capacitor.  EasyStart also records information about the compressor during the first few startups to optimize its performance. It also monitors overcurrent and fault conditions with phase detection; when it detects a stall, it shuts off the compressor and doesn’t attempt to restart it until a few minutes have passed. Matteo and Bryan also discuss: EasyStart models Solar, generator, and RV use Impedance Positive temperature coefficient resistors (PTCRs) Compressors running backward EasyStart’s Bluetooth capabilities Tech support and product education Offering useful upgrades to customers Running and starting watt specifications for generators   Learn more about EasyStart or purchase it directly from https://www.microair.net/. You can also contact the manufacturer by email at sales@microair.net.  You can view the EasyStart home installation video at https://www.youtube.com/watch?v=bp4U-husy1o&ab_channel=MicroAir.  If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Aug 23, 2022 • 9min

Heat of Compression - Short #151

In this short podcast, Bryan explains what the heat of compression is and why we should care about it as HVAC/R professionals. More heat is rejected in the condenser than absorbed in the evaporator coil, and that’s because the compressor adds heat. That added heat is called “heat of compression.” That heat does NOT contribute to the net refrigeration effect (NRE), as it doesn’t contribute to cooling. When we compress something, we increase the system entropy during that process. Entropy is the waste and disorder associated with work. There is some inefficiency, which we see in the form of additional heat. So, the HVAC system needs to reject that additional heat of compression, and we can plot and track reversible changes by following lines of constant entropy. As the temperature increases, the molecules begin moving more quickly. However, the refrigerant doesn’t absorb many more BTUs in the compressor (in a properly operating system). The temperature spikes, but the compressor doesn’t typically add a significant number of BTUs to the refrigerant. Heat also enters the system via the suction line, which also doesn’t contribute to the NRE. Long, uninsulated suction lines can absorb a lot of heat without cooling the space at all. That heat also has to be rejected in the condenser. So, short, well-insulated suction lines tend to absorb less heat. When plotting the heat of compression, we’re looking at BTUs added into the system in the compressor, discharge line, and suction line. BTUs that don’t contribute to the NRE may fall under the “heat of compression” label, though the actual definition may vary by organization.   Check out Eugene Silberstein’s book, Pressure Enthalpy Without Tears, at https://escogroup.org/shop/itemdetail.aspx?ID=1445.  If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Aug 18, 2022 • 41min

Intro to ACCA Manual T

Ed Janowiak joins the podcast to introduce us to ACCA Manual T. Compared to other manuals, Manual T is one of the least-considered ACCA manuals. However, it’s the manual that advises us on how not to blow high-velocity air on people and has maintained the same standards since the mid-1900s. Unlike Manuals J, S, and D, Manual T is not recognized in code compliance. Manual T deals with air distribution; it helps us find out the throw and spread, which informs our ductwork design in Manual D. We need to know the customer’s expectations and the air velocity we’ll need to manage at the registers before designing the ductwork. Register placement is also a critical element of Manual T. Throw and spreqd can vary wildly, and register selection and placement are going to have a significant effect on comfort as a result. Register placement on the ceiling may achieve the Coanda effect to assist with air distribution, and that can be especially useful in low-load or passive homes. Low-load homes are an interesting case, as they use less hardware than other homes, meaning that we need to make the most of calculations and equipment selection. Manual T ultimately focuses on using the diffusers and registers, rather than the equipment, to spread air throughout a space. Knowledge of the principles in Manual T also allows us to communicate, establish, and manage expectations with the customer. Ed and Bryan also discuss: Registers, diffusers, grilles, and vents Filter restrictions ACCA Manual LLH Air movement in the occupied vs. unoccupied zone Manual T as an extension of Manual D What it means to lend credibility in this industry Floor vs. ceiling registers based on climate   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Aug 16, 2022 • 12min

Net Refrigeration Effect - Short #150

In this short podcast, Bryan explains what the net refrigeration effect (NRE) is and how it affects HVAC systems. The net refrigeration effect (NRE) is what happens in the evaporator coil. The evaporator is the heat absorber; as air passes over the coil, the cooler refrigerant within the evaporator absorbs that heat and boils. The NRE is the net energy change that occurs during that process. You can plot the NRE on a pressure-enthalpy chart. When air moves over the evaporator coil, there is a change in enthalpy or BTUs per pound in the refrigerant (usually called delta h). There should be more BTUs per pound in refrigerant exiting the coil than when it went in. We have to know how many pounds of refrigerant we’re circulating (mass flow rate) and how many BTUs are in those pounds. Many of those BTUs come from latent heat transfer, which happens when the refrigerant boils. When refrigerant undergoes a phase change, it remains at a constant temperature (sensible heat), but it continues absorbing heat. The heat absorbed contributes to the phase change, and that’s latent heat. Most of the NRE deals with those latent BTUs. (Note: this does NOT refer to latent heat loads.) In addition to the boiling or saturation phase, we also have to consider BTU changes when refrigerant flashes off at the beginning of the evaporator coil and heat obtained during the superheating phase at the top of the coil. We can maximize our NRE by running a cold evaporator coil (without freezing) and ensuring the evaporator is full of boiling refrigerant. BTUs absorbed in the suction line do NOT count towards the NRE, as they don’t contribute to cooling spaces or refrigerated boxes.   Check out Eugene Silberstein’s book, Pressure Enthalpy Without Tears, at https://escogroup.org/shop/itemdetail.aspx?ID=1445.  If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Aug 11, 2022 • 54min

Systems Thinking - Gas and Combustion

Eric Kaiser returns to the podcast to talk about how we can use systems thinking to approach gas appliances and combustion in HVAC installation and service. Gas lines can be made of a few different materials, including black iron, copper, and CSST. These all have benefits, setbacks, and appropriate applications. For example, copper is common in propane (LP) systems but not natural gas. In coastal environments, galvanized pipe tends to be most common due to the increased likelihood of corrosion. Gas lines may also need sleeves to prevent them from interacting with moisture. The piping also needs to be routed in accordance with code; in many cases, joints need to be exposed so that a technician can check for leaks. Keeping joints inside walls is risky, especially when light switches cause sparks and could potentially ignite leaking natural gas. In any case, leak detection can be tricky unless you have a combustible gas leak detector and bubbles that work well for gas lines. Safety has to be the top priority when it comes to venting, especially on water heaters. A personal low-level CO monitor can also keep you and your customers safe by detecting small yet harmful amounts of carbon monoxide. Makeup air and combustion air are also important in gas appliances; unbalanced pressures may result in undesigned return paths. Traps and improper pitch may also lead to improper venting, as condensate may get trapped in the pipe and may lead to freezing or other complications. Eric and Bryan also discuss: Pipe material and flow rate Pipe sizing and connectors Regulator issues on gas water heaters and pool heaters Thread sealant products and best practices Bubble solution recommendations Signs and risks of backdrafting Exhaust pipe insulation Drain installation   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.
undefined
Aug 4, 2022 • 59min

HVAC School Admin Discussion - Moderating a Successful Community

Some admins from the HVAC School Facebook group join the podcast to discuss the art of moderating a successful community. Bryan is joined by Eric Kaiser, Ty Branaman, Michael Housh, and Neil Comparetto. A community based on a skilled trade gives people an inviting space to share information and ask questions. It’s also a space that allows people to practice how they present information. Groups also connect people across geographical locations, and we can get regional perspectives that change the way we think about things. However, community standards are necessary to keep groups professional and on-topic. Swearing is a slippery slope that may lead to personal attacks, which make the community hostile and unhelpful. The main goal is to keep a respectful atmosphere, and moderators have to draw the line somewhere, but there’s a difference between cultivating a productive atmosphere and being dogmatic. People who interact in those communities need to do it for altruistic reasons, not to satisfy their egos. Giving detailed, accurate answers (ideally with a source to back up the information) is the best way to contribute meaningfully. Engaging in rigorous debates with an open mind is also a great way to see many different viewpoints.  Debates in HVAC communities are great, but they require boundaries and mutual respect between debaters. Namecalling, blaming others, or dragging politics into the discussion is unproductive. Overall, it’s best to stay positive and try to keep things helpful, and admins try to maintain an atmosphere that can be both serious and lighthearted but is always helpful and respectful. HVAC communities and groups are not places to share other groups, content, or job postings. These groups are not marketing centers; they are forums for learning and discussing the work we do every day. Ty, Neil, Michael, Eric, and Bryan also talk about: How they got started in online HVAC communities Unproductive arguments about codes Banning and muting members Receiving feedback Avoiding logical fallacies in debates How egos hold people back Trite and unproductive catchphrases, slogans, and jokes Responding to disagreements productively Communicating with people appropriately Admitting fault and refraining from judging others who are incorrect Moderating posts for quality and shareability   If you have an iPhone, subscribe to the podcast HERE, and if you have an Android phone, subscribe HERE. Check out our handy calculators HERE.

The AI-powered Podcast Player

Save insights by tapping your headphones, chat with episodes, discover the best highlights - and more!
App store bannerPlay store banner
Get the app