Yingzhen Li, a researcher specializing in Bayesian communication and uncertainty in neural networks, teams up with François-Xavier Briol, who focuses on machine learning tools for Bayesian statistics. They dive into the complexities of Bayesian deep learning, emphasizing uncertainty quantification and its role in effective modeling. The discussion covers the evolution of Bayesian models, simulation-based inference methods, and the urgent need for better computational tools to tackle high-dimensional challenges. Their insights on integrating machine learning with Bayesian approaches spark exciting possibilities in the field.