In this episode, we hosted Judah Goldfeder, a PhD candidate at Columbia University and student researcher at Google, to discuss robotics, reproducibility in ML, and smart buildings.
Key topics covered:
Robotics challenges: We discussed why robotics remains harder than many expected, compared to LLMs. The real world is unpredictable and unforgiving, and mistakes have physical consequences. Sim-to-real transfer remains a major bottleneck because simulators are tedious to configure accurately for each robot and environment. Unlike text, robotics lacks foundation models, partly due to limited clean, annotated datasets and the difficulty of collecting diverse real-world data.
Reproducibility crisis: We discussed how self-reported benchmarks can lead to p-hacking and irreproducible results. Centralized evaluation systems (such as Kaggle or ImageNet challenges), where researchers submit algorithms for testing on hidden test sets, seem to drive faster progress.
Smart buildings: Judah's work at Google focuses on using ML to optimize HVAC systems, potentially reducing energy costs and carbon emissions significantly. The challenge is that every building is different. It makes the simulation configuration extremely labor-intensive. Generative AI could help by automating the process of converting floor plans or images into accurate building simulations.
Links:
- Judah website - https://judahgoldfeder.com/
Music:
"Kid Kodi" — Blue Dot Sessions — via Free Music Archive — CC BY-NC 4.0.
"Palms Down" — Blue Dot Sessions — via Free Music Archive — CC BY-NC 4.0.
Changes: trimmed


