Model sizes are crazy these days with billions and billions of parameters. As Mark Kurtz explains in this episode, this makes inference slow and expensive despite the fact that up to 90%+ of the parameters don’t influence the outputs at all.
Mark helps us understand all of the practicalities and progress that is being made in model optimization and CPU inference, including the increasing opportunities to run LLMs and other Generative AI models on commodity hardware.
Changelog++ members save 1 minute on this episode because they made the ads disappear. Join today!
Sponsors:
Fastly – Our bandwidth partner. Fastly powers fast, secure, and scalable digital experiences. Move beyond your content delivery network to their powerful edge cloud platform. Learn more at fastly.com
Fly.io – The home of Changelog.com — Deploy your apps and databases close to your users. In minutes you can run your Ruby, Go, Node, Deno, Python, or Elixir app (and databases!) all over the world. No ops required. Learn more at fly.io/changelog and check out the speedrun in their docs.