Data Skeptic cover image

Data Skeptic

[MINI] k-Nearest Neighbors

Jul 24, 2015
08:33

This episode explores the k-nearest neighbors algorithm which is an unsupervised, non-parametric method that can be used for both classification and regression. The basica concept is that it leverages some distance function on your dataset to find the $k$ closests other observations of the dataset and averaging them to impute an unknown value or unlabelled datapoint.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode