John Schulman is a Research Scientist and co-founder of Open AI. John co-leads the reinforcement learning team, researching algorithms that safely and efficiently learn by trial and error and by imitating humans.
His PhD thesis is titled "Optimizing Expectations: From Deep Reinforcement Learning to Stochastic Computation Graphs", which he completed in 2016 at Berkeley. We talk about his work on stochastic computation graphs and TRPO, how it evolved to PPO and how it's used in large-scale applications like Open AI Five, as well as his recent work on generalization in RL.
Episode notes: https://cs.nyu.edu/~welleck/episode7.html
Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html
Support The Thesis Review at www.buymeacoffee.com/thesisreview
Get the Snipd podcast app
Unlock the knowledge in podcasts with the podcast player of the future.
AI-powered podcast player
Listen to all your favourite podcasts with AI-powered features
Discover highlights
Listen to the best highlights from the podcasts you love and dive into the full episode
Save any moment
Hear something you like? Tap your headphones to save it with AI-generated key takeaways
Share & Export
Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more
AI-powered podcast player
Listen to all your favourite podcasts with AI-powered features
Discover highlights
Listen to the best highlights from the podcasts you love and dive into the full episode