Machine learning models can be built by plotting points in space and optimizing a function based off of those points.

For example, I can plot every person in the United States in a 3 dimensional space: age, geographic location, and yearly salary. Then I can draw a function that minimizes the distance between my function and each of those data points. Once I define that function, you can give me your age and a geographic location, and I can predict your salary.

Plotting these points in space is called embedding. By embedding a rich data set, and then experimenting with different functions, we can build a model that makes predictions based on those data sets. Yufeng Guo is a developer advocate at Google working on CloudML. In this show, we described two separate examples for preparing data, embedding the data points, and iterating on the function in order to train the model.

In a future episode, Yufeng will discuss CloudML and more advanced concepts of machine learning.

The post Model Training with Yufeng Guo appeared first on Software Engineering Daily.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode