Towards Data Science cover image

Towards Data Science

92. Daniel Filan - Peering into neural nets for AI safety

Jul 14, 2021
01:06:02

Many AI researchers think it’s going to be hard to design AI systems that continue to remain safe as AI capabilities increase. We’ve seen already on the podcast that the field of AI alignment has emerged to tackle this problem, but a related effort is also being directed at a separate dimension of the safety problem: AI interpretability.

Our ability to interpret how AI systems process information and make decisions will likely become an important factor in assuring the reliability of AIs in the future. And my guest for this episode of the podcast has focused his research on exactly that topic. Daniel Filan is an AI safety researcher at Berkeley, where he’s supervised by AI pioneer Stuart Russell. Daniel also runs AXRP, a podcast dedicated to technical AI alignment research.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode