Data Skeptic cover image

Data Skeptic

Algorithmic Detection of Fake News

Aug 17, 2018
46:26

The scale and frequency with which information can be distributed on social media makes the problem of fake news a rapidly metastasizing issue. To do any content filtering or labeling demands an algorithmic solution.

In today's episode, Kyle interviews Kai Shu and Mike Tamir about their independent work exploring the use of machine learning to detect fake news.

Kai Shu and his co-authors published Fake News Detection on Social Media: A Data Mining Perspective, a research paper which both surveys the existing literature and organizes the structure of the problem in a robust way.

Mike Tamir led the development of fakerfact.org, a website and Chrome/Firefox plugin which leverages machine learning to try and predict the category of a previously unseen web page, with categories like opinion, wiki, and fake news.

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode