You can’t build robust systems with inconsistent, unstructured text output from LLMs. Moreover, LLM integrations scare corporate lawyers, finance departments, and security professionals due to hallucinations, cost, lack of compliance (e.g., HIPAA), leaked IP/PII, and “injection” vulnerabilities.
In this episode, Chris interviews Daniel about his new company called Prediction Guard, which addresses these issues. They discuss some practical methodologies for getting consistent, structured output from compliant AI systems. These systems, driven by open access models and various kinds of LLM wrappers, can help you delight customers AND navigate the increasing restrictions on “GPT” models.
Join the discussion
Changelog++ members save 3 minutes on this episode because they made the ads disappear. Join today!
Sponsors:
- Fastly – Our bandwidth partner. Fastly powers fast, secure, and scalable digital experiences. Move beyond your content delivery network to their powerful edge cloud platform. Learn more at fastly.com
- Fly.io – The home of Changelog.com — Deploy your apps and databases close to your users. In minutes you can run your Ruby, Go, Node, Deno, Python, or Elixir app (and databases!) all over the world. No ops required. Learn more at fly.io/changelog and check out the speedrun in their docs.
- Changelog News – A podcast+newsletter combo that’s brief, entertaining & always on-point. Subscribe today.
Featuring:
Show Notes:
Something missing or broken? PRs welcome!