AI-powered
podcast player
Listen to all your favourite podcasts with AI-powered features
UCSF's Fluorescence Activated Cell Sorting Facts
There's a lot of cool math that goes into that too. You have to also look at other things like the population size and all kinds of other factors. And then the exhaustion side too, right? Because there's proteome marks that you have to be looking at to really decide, is this cell exhausted? Yeah. So we can sort tens of millions of T cells in a matter of hours.
Episode Summary
Chimeric antigen receptors, or CARs, repurpose the build-in targeting and homing signals of our immune system to direct T cells to find and eliminate cancers. Although CAR-T cells have transformed the care of liquid tumors in the circulating blood, like B cell leukemia and lymphoma, CAR-T therapy has shown limited efficacy against solid tumors. To unlock the full potential of CAR-T therapies, better receptor designs are needed. Unfortunately, the space of potential designs is too large to check one by one. To design better CARs, Dan and his co-author Camillia Azimi developed CAR Pooling, an approach to multiplex CAR designs by testing many at once with different immune costimulatory domains. They select the CARs that exhibit the best anti-tumor response and develop novel CARs that endow the T cells with better anti-tumor properties. Their methods and designs may help us develop therapies for refractory, treatment-resistant cancers, and may enable CAR-T cells to cure infectious diseases, autoimmunity, and beyond.
About the Author
Key Takeaways
Impact
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode
Hear something you like? Tap your headphones to save it with AI-generated key takeaways
Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode