AI-powered
podcast player
Listen to all your favourite podcasts with AI-powered features
Intro
This chapter delves into singular learning theory, a mathematical framework that enhances our understanding of neural networks beyond classical statistical learning. The discussion highlights its advantages in accommodating the complexities of deep learning models and its implications for artificial intelligence alignment.
What's going on with deep learning? What sorts of models get learned, and what are the learning dynamics? Singular learning theory is a theory of Bayesian statistics broad enough in scope to encompass deep neural networks that may help answer these questions. In this episode, I speak with Daniel Murfet about this research program and what it tells us.
Patreon: patreon.com/axrpodcast
Ko-fi: ko-fi.com/axrpodcast
Topics we discuss, and timestamps:
0:00:26 - What is singular learning theory?
0:16:00 - Phase transitions
0:35:12 - Estimating the local learning coefficient
0:44:37 - Singular learning theory and generalization
1:00:39 - Singular learning theory vs other deep learning theory
1:17:06 - How singular learning theory hit AI alignment
1:33:12 - Payoffs of singular learning theory for AI alignment
1:59:36 - Does singular learning theory advance AI capabilities?
2:13:02 - Open problems in singular learning theory for AI alignment
2:20:53 - What is the singular fluctuation?
2:25:33 - How geometry relates to information
2:30:13 - Following Daniel Murfet's work
The transcript: https://axrp.net/episode/2024/05/07/episode-31-singular-learning-theory-dan-murfet.html
Daniel Murfet's twitter/X account: https://twitter.com/danielmurfet
Developmental interpretability website: https://devinterp.com
Developmental interpretability YouTube channel: https://www.youtube.com/@Devinterp
Main research discussed in this episode:
- Developmental Landscape of In-Context Learning: https://arxiv.org/abs/2402.02364
- Estimating the Local Learning Coefficient at Scale: https://arxiv.org/abs/2402.03698
- Simple versus Short: Higher-order degeneracy and error-correction: https://www.lesswrong.com/posts/nWRj6Ey8e5siAEXbK/simple-versus-short-higher-order-degeneracy-and-error-1
Other links:
- Algebraic Geometry and Statistical Learning Theory (the grey book): https://www.cambridge.org/core/books/algebraic-geometry-and-statistical-learning-theory/9C8FD1BDC817E2FC79117C7F41544A3A
- Mathematical Theory of Bayesian Statistics (the green book): https://www.routledge.com/Mathematical-Theory-of-Bayesian-Statistics/Watanabe/p/book/9780367734817 In-context learning and induction heads: https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
- Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity: https://arxiv.org/abs/2106.15933
- A mathematical theory of semantic development in deep neural networks: https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
- Consideration on the Learning Efficiency Of Multiple-Layered Neural Networks with Linear Units: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4404877
- Neural Tangent Kernel: Convergence and Generalization in Neural Networks: https://arxiv.org/abs/1806.07572
- The Interpolating Information Criterion for Overparameterized Models: https://arxiv.org/abs/2307.07785
- Feature Learning in Infinite-Width Neural Networks: https://arxiv.org/abs/2011.14522
- A central AI alignment problem: capabilities generalization, and the sharp left turn: https://www.lesswrong.com/posts/GNhMPAWcfBCASy8e6/a-central-ai-alignment-problem-capabilities-generalization
- Quantifying degeneracy in singular models via the learning coefficient: https://arxiv.org/abs/2308.12108
Episode art by Hamish Doodles: hamishdoodles.com
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode
Hear something you like? Tap your headphones to save it with AI-generated key takeaways
Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode