Support the show to get full episodes, full archive, and join the Discord community.
Check out my free video series about what's missing in AI and Neuroscience
Ole Jensen is co-director of the Centre for Human Brain Health at University of Birmingham, where he runs his Neuronal Oscillations Group lab. Ole is interested in how the oscillations in our brains affect our cognition by helping to shape the spiking patterns of neurons, and by helping to allocate resources to parts of our brains that are relevant for whatever ongoing behaviors we're performing in different contexts. People have been studying oscillations for decades, finding that different frequencies of oscillations have been linked to a bunch of different cognitive functions. Some of what we discuss today is Ole's work on alpha oscillations, which are around 10 hertz, so 10 oscillations per second. The overarching story is that alpha oscillations are thought to inhibit or disrupt processing in brain areas that aren't needed during a given behavior. And therefore by disrupting everything that's not needed, resources are allocated to the brain areas that are needed. We discuss his work in the vein on attention - you may remember the episode with Carolyn Dicey-Jennings, and her ideas about how findings like Ole's are evidence we all have selves. We also talk about the role of alpha rhythms for working memory, for moving our eyes, and for previewing what we're about to look at before we move our eyes, and more broadly we discuss the role of oscillations in cognition in general, and of course what this might mean for developing better artificial intelligence.
0:00 - Intro
2:58 - Oscillations import over the years
5:51 - Oscillations big picture
17:62 - Oscillations vs. traveling waves
22:00 - Oscillations and algorithms
28:53 - Alpha oscillations and working memory
44:46 - Alpha as the controller
48:55 - Frequency tagging
52:49 - Timing of attention
57:41 - Pipelining neural processing
1:03:38 - Previewing during reading
1:15:50 - Previewing, prediction, and large language models
1:24:27 - Dyslexia