AI-powered
podcast player
Listen to all your favourite podcasts with AI-powered features
The Importance of Data Diff Plus Lineage
Data diff could tell us that if this code was merged and deployed, we would have fewer rows in our users table because I switched the source of a session event. It could also tell me whether the change in definition of an active user I made is actually the correct one. And it really helps me understand what is going to be the impact on data both at a statistical level and a role level as a developer.
Data engineering is all about building workflows, pipelines, systems, and interfaces to provide stable and reliable data. Your data can be stable and wrong, but then it isn't reliable. Confidence in your data is achieved through constant validation and testing. Datafold has invested a lot of time into integrating with the workflow of dbt projects to add early verification that the changes you are making are correct. In this episode Gleb Mezhanskiy shares some valuable advice and insights into how you can build reliable and well-tested data assets with dbt and data-diff.
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA
Special Guest: Gleb Mezhanskiy.
Sponsored By:
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode
Hear something you like? Tap your headphones to save it with AI-generated key takeaways
Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode