17min chapter

Latent Space: The AI Engineer Podcast cover image

ICLR 2024 — Best Papers & Talks (ImageGen, Vision, Transformers, State Space Models) ft. Durk Kingma, Christian Szegedy, Ilya Sutskever

Latent Space: The AI Engineer Podcast

CHAPTER

Unraveling Unsupervised Learning and Compression

This chapter explores the complex relationship between unsupervised learning and compression, focusing on auto-encoders and generative models. It highlights the potential of unsupervised methods to uncover hidden data structures, while discussing historical challenges and introducing innovative perspectives on distribution matching and effective strategies for utilizing unlabeled data. Additionally, it presents intriguing findings on the capabilities of language models and their surprising applications in image compression.

00:00

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode