AI-powered
podcast player
Listen to all your favourite podcasts with AI-powered features
Challenges of Storing Information in Long-Running Applications
This chapter discusses the challenges of storing information in long-running applications and the need for side services. It also provides information on how to get involved in the Tinfoil open source project.
In this episode, we cover:
00:00:00 - Introduction
00:04:25 - Cadence to Temporal
00:09:15 - Breaking down the Technology
00:15:35 - Three Tips for Using Temporal
00:19:21 - Outro
Links:
Transcript
Jason: And just so I’m sure to pronounce your names right, it’s Maxim Fateev?
Maxim: Yeah, that’s good enough. That’s my real name but it’s—[laugh].
Jason: [laugh]. Okay.
Maxim: It’s, in American, Maxim Fateev.
Jason: And Samar Abbas.
Samar: That sounds good.
Jason: Welcome to another episode of Build Things on Purpose, part of the Break Things on Purpose podcast. In our build episodes, we chat with the engineers and developers who create tools that help us build and operate modern applications. In this episode, Maxim Fateev and Samar Abbas join us to chat about the problems with orchestrating microservices and the software they’ve created to help solve those problems.
Jason: Hey, everyone, welcome to Break Things on Purpose, the podcast about reliability, chaos engineering, and all things SRE and DevOps. With me today, I’ve got Maxim Fateev and Samar Abbas, the cofounders of a company called Temporal. Maxim, why don’t you tell us a little bit more about yourself?
Maxim: Hi, thanks for inviting me to the podcast. I have been around for quite a while. In 2002, I joined Amazon and Amazon was pretty small company back then, I think 800 developers; compared to its current size it was really small. I quickly moved to the platform team, among other things. And it wasn’t AWS back then, it was just the software platform, actually was called [Splat 00:01:36].
I worked in a team which owned the old publish-subscribe technologies of Amazon, among other things. As a part of the team, I oversaw implementation of service and architecture, Amazon [unintelligible 00:01:47] roll out services at large scale, and they built services for [unintelligible 00:01:51] Amazon so all this asynchronous communication, there was something my team was involved in. And I know this time that this is not the best way to build large-scale service-oriented architectures, or relying on asynchronous messaging, just because it’s pretty hard to do without central orchestration. And as part of that, our team conceived and then later built a Simple Workflow Service. And I was tech leader for the public release of the AWS Simple Workflow Service.
Later, I also worked in Google and Microsoft. Later I joined Uber. Samar will tell his part of the story but we together built Cadence, which was, kind of, the open-source version of the same—based on the same ideas of the Simple Workflow. And now we driving Temporal open-source project and the company forward.
Jason: And Samar, tell us a little bit about yourself and how you met Maxim.
Samar: Thanks for inviting us. Super excited to be here. In 2010, I was basically wanted to make a switch from traditional software development like it used to happen back at Microsoft, to I want to try out the cloud side of things. So, I ended up joining Simple Workflow team at AWS; that’s where I met Maxim for the first time. Back then, Maxim already had built a lot of messaging systems, and then saw this pattern where messaging turned out—[unintelligible 00:03:08] believe that messaging was the wrong abstraction to build certain class of applications out there.
And that is what started Simple Workflow. And then being part of that journey, I was, like, super excited. Since then, in one shape or another, I’ve been continuing that journey, which we started back then in the Simple Workflow team while working with Maxim. So, later in 2012, after shipping Simple Workflow, I basically ended up coming back to Azure side of things. I wrote this open-source library by the name of Durable Task Framework, which looks like later Azure Functions team ended up adopting it to build what they are calling as Azure Durable Functions.
And then in 2015, Uber opened up office here in Seattle; I ended up joining their engineering team in the Seattle office, and out of coincidence, both me and Max ended up joining the company right about the same time. Among other things we worked on together, like, around 2017, we started the Cadence project together, which was you can think of a very similar idea as like Simple Workflow, but kind of applying it to the problem we were seeing back at Uber. And one thing led to another and then now we are here basically, continuing that journey in the form of Temporal.
Jason: So, you started with Cadence, which was an internal tool or internal framework, and decided to strike out on your own and build Temporal. Tell me about the transition of that. What caused you to, number one, strike out on your own, and number two, what’s special about Temporal?
Maxim: We built the Cadence from the beginning as an open-source project. And also it never was, like, Uber management came to us and says, “Let’s build this technology to run applications reliably,” or workflow technology or something like that. It was absolutely a bottoms-up creation of that. And we are super grateful to Uber that those type of projects were even possible. But we practically started on our own, we build it first version of that, and we got resources later.
And [unintelligible 00:05:09] just absolutely grows bottoms-up adoption within Uber. It grew from zero to, like, over a hundred use cases within three years that this project was hosted by our team at Uber. But also, it was an open-source project from the beginning, we didn’t get much traction first, kind of, year or two, but then after that, we started to see awesome companies like HashiCorp, Box, Coinbase, Checkr, adopt us. And there are a lot of others, it’s just that not all of them are talking about that publicly. And when we saw this external adoption, we started to realize that thing within Uber, we couldn’t really focus on external events, like, because we believe this technology is very widely applicable, we needed, kind of, have separate entity, like a company, to actually drive the technology forward for the whole world.
Like most obvious thing, you cannot have a hosted version [unintelligible 00:06:00] at Uber, right? We would never create a cloud offering, and everyone wants it. So, that is, kind of like, one thing led to another, Samar said, and we ended up leaving Uber and starting our own company. And that was the main reasoning is that we wanted to actually make this technology successful for everybody in the whole world, not just within Uber. Also the, kind of, non-technical but also technical reasons, one of the benefits of doing that was that we had actually accumulated quite pretty large technical debt when running, like, Cadence, just because we were in it for four years without single backwards-incompatible change because since [unintelligible 00:06:37] production, we still were on the same cluster with the same initial users, and we never had downtime, at least, lik, without relat—infrequent outages.
So, we had to do everything in backwards-compatible manner. At Temporal, we could go and rethink that a little bit, and we sp...
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode
Hear something you like? Tap your headphones to save it with AI-generated key takeaways
Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more
Listen to all your favourite podcasts with AI-powered features
Listen to the best highlights from the podcasts you love and dive into the full episode