7min chapter

Machine Learning Street Talk (MLST) cover image

Neel Nanda - Mechanistic Interpretability (Sparse Autoencoders)

Machine Learning Street Talk (MLST)

CHAPTER

Exploring the Gemmascope Project

This chapter examines the Gemmascope project, which utilizes sparse autoencoders for enhancing mechanistic interpretability in language models. It features a discussion on the manipulation of feature vectors, illustrated through the Golden Gate Claude example, to reveal insights and implications of model behavior.

00:00

Get the Snipd
podcast app

Unlock the knowledge in podcasts with the podcast player of the future.
App store bannerPlay store banner

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode

Save any
moment

Hear something you like? Tap your headphones to save it with AI-generated key takeaways

Share
& Export

Send highlights to Twitter, WhatsApp or export them to Notion, Readwise & more

AI-powered
podcast player

Listen to all your favourite podcasts with AI-powered features

Discover
highlights

Listen to the best highlights from the podcasts you love and dive into the full episode